Elastic, mechanical and thermodynamic properties of zinc blende III-X (X= As, Sb): ab-initio calculations

Miloud IBRIR

Abstract

In this work, density functional theory plane-wave full potential method, with local density approximation (LDA) are used to investigate the structural, mechanical and thermodynamic properties of of zincblende III-X ( X= As, Sb) compends. Comparison of the calculated equilibrium lattice constants and experimental data shows very good agreement. The elastic constants were determined from a linear fit of the calculated stress-strain function according to Hooke’s law. From the elastic constants, the bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio σ, anisotropy factor A, the ratio B/G and the hardness parameter H for zincblende III-X ( X= As, Sb) compound are obtained. Our calculated elastic constants indicate that the ground state structure of III-X ( X= As, Sb) is mechanically stable. The sound velocities and Debye temperature are also predicted from elastic constants.

Full Text:

PDF

References

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, “An Augmented Plane Wave plus Local orbital rogram for Calculating the Crystal Properties”, revised edition WIEN2k_13.1, pp.132-135.

S. Q. Wang and H. Q. Ye, “Phys. Stat”. Sol B 1, 2003, pp 45.

Wei Li and Markus Pessa, “Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard’s law”, Appl. Phys. Lett. 78, 2864, 2001.

G. Stenuit and S. Fahy, “First-principles calculations of the mechanical and structural properties of GaNxAs1−x: Lattice and elastic constants”, Phys. Rev. B 76, 035201, 2007.

R. Weil and W. O.Groves, “Elastic Constants of Gallium Phosphide”, J. Appl. Phys. Vol 39, 1968, pp 4049.

D.C. Wallace, “Thermodynamics of Crystals,” John Wiley, New York, 1972.

D. Connetable, O. Thomas, “First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi”, Phys. Rev. B 79, 2009, pp 094101.

L. Kleinmann, “Deformation Potentials in Silicon. I. Uniaxial Strain”, Phys. Rev. Vol 128, 1962, pp 2614

W. Cady, “Piezoelectricity (McGraw-Hill)”, New York, 1946.

M. Sajjad, S.M. Alay-e-Abbas, H.X. Zhang, N.A. Noor,Y. Saeed, Imran Shakir, A. Shaukat, “First principles study of structural, elastic, electronic and magnetic properties of Mn-doped AlY (Y=N, P, As) compounds”, J Mag Mag Mater, Vol 390, 2015, pp 78-86.

W.A. Harrison, “Elastic Structure and Properties of Solids, Dover Publications”, Inc., New York, 1980.

V. I. Razumovskiy, A. V. Ruban, P. A. Korzhavyi, “First-principles study of elastic properties of Cr- and Fe-rich Fe-Cr alloys”, Phys. Rev. B 84, 2011, pp 024106-8.

W. Voight, Ann. Phys. (Leipzig) 38 (1889) 573.

A. Reuss, Z. Math. Mech. Vol 9, 1929, pp 49.

R. Hill, “The Elastic Behaviour of a Crystalline Aggregate”, Proc. Phys. Soc., London, Sect. A 65, 1952, pp 349.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide”, J App. Phys. Vol 53, 1982, R123.

S. M. Sze, “Semiconductor sensors”. New York: John Wiley & Sons,1994.

V. Mankad, N. Rathad, S. D. Gupta, S. K. Gupta, P. K. Jha, Mater. Chem. Phys. Vol 129, 2011, pp 816.

C. H. Jenkins, S. K .Khanna, “Mechanics of Materials”, ISBN 0-12-383852-5, 2005, pp. 62-72.

S.F. Pugh, “Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, Philos. Mag. Vol 45, 1954, pp 823-843.

Z. Dang, M. Pang, Y. Mo, Y. Zhan, “Theoretical prediction of structural, elastic and electronic properties of Si-doped TiCu Geintermetallics”, Current Appl. Physics, Vol 13, 2013, pp 549-555.

E.S. Yousef, A. El-Adawy, N. El-Khesh Khany, “Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system”, Solid State Commun. Vol 139, 2006, pp 108.

D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics”, Mater. Sci. Technol. 8, 1992, pp 345.

M. Jamal, S. J. Asadabadi, I. Ahmad, H. A: R. Aliabad, “Elastic constants of cubic crystals”, Comput. Mater. Sci. Vol 95 , 2014, pp 592-599.

http://en.wikiversity.org/wiki/Introduction_to_Elasticity/

O. L. Anderson, “A simplified method for calculating the debye temperature from elastic constants”, J. Phys. Chem. Solids 24, 1963, pp 909-917.

E. Schreiber, O.L. Anderson, N. Soga, “Elastic Constants and Their Measurements”, 3th ed., McGraw-Hill, New York, 1973.

M.E. Fine, L.D. Brown, H.L. Marcus, “Elastic Constants Versus Melting Temperature in Metals”, Scripta Metall., 18, 1984, pp 951-956.

D. R. Clarke, “Materials selection guidelines for low thermal conductivity thermal barrier coatings”, Surf. Coat. Tech. 163, 2003, pp 67-74.

Refbacks

  • There are currently no refbacks.