Design and simulation of HTL-free CuBi2O4 based thin film solar cells for performance efficiency above 36%

A.T.M. Saiful Islam, Basra Sultana, Rima Aktar, Nayan Mondal, Chitra Sen, Jhumpa Ray, Abdullah Al Mamun, Md. Dulal Haque

Abstract

The quest for efficient and sustainable energy solutions has propelled the exploration of novel materials and strategies for enhancing the performance of thin-film solar cells (TFSCs). This work presents a comprehensive investigation into the potential of CuBi2O4 based TFSCs as a viable candidate for high-efficiency photovoltaic devices. Through rigorous numerical simulation utilizing the SCAPS-1D software, this study delves into the intricate interplay of material properties, layer characteristics, and design strategies to unlock the untapped potential of CuBi2O4 based SCs. The study extensively investigates the influence of thickness, doping levels, and defect densities of each absorber on electrical properties like open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE). The simulation results reveal a remarkable achievement, with a recorded efficiency of 36.04%, FF of 81.11%, JSC of 32.15 mA/cm², and VOC of 1.38 V. These findings point to the potential of thin-film SC based on CuBi2O4 as a greener and more efficient photovoltaic option. As an absorber material for next-generation SC, CuBi2O4 exhibits potential with an efficiency of 36.04%. This investigation advances CuBi2O4-based thin-film SC and provides light on sustainable energy solutions.

Full Text:

PDF

References

N. Singh, A. Agarwal, and M. Agarwal. Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell. Sol. Energy, 2020, vol. 208, pp. 399–410

K. Sarker, M. S. Sumon, M. F. Orthe, S. K. Biswas, and M. M. Ahmed. Numerical Simulation of High Efficiency Environment Friendly CuBi2O4-Based Thin-Film Solar Cell Using SCAPS-1D. Int. J. Photoenergy, 2023, vol. 2023, pp. 2–12

M. Kaur and H. Singh. A review: Comparison of Silicon Solar cells and thin film solar cells. Int. J. Core Eng. Manag., 2016, vol. 3, no. 2, pp. 1–9.

J. Zhao, A. Wang, and M. A. Green. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovoltaics Res. Appl., 1999, vol. 7, no. 6, pp. 471–474

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie. Solar cell efficiency tables (version 52). Prog. Photovoltaics Res. Appl., 2018, vol. 26, no. 7, pp. 427–436

F. A. Jhuma and M. J. Rashid. Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell. J. Theor. Appl. Phys., 2020, vol. 14, no. 1, pp. 75–84

Sudipta Banerjee. High Efficiency CdTe/CdS Thin Film Solar Cell. Int. J. Eng. Res., 2015, vol. V4, no. 09, pp. 700–703

M. S. Islam et al. Defect study and modelling of SnX3-based perovskite solar cells with SCAPS-1D. Nanomaterials, 2021, vol. 11, no. 5

S. P. Berglund, H. C. Lee, P. D. Núñez, A. J. Bard, and C. B. Mullins. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys. Chem. Chem. Phys., 2013, vol. 15, no. 13, pp. 4554–4565

W. Shi et al. Ultra-Fast Construction of Novel S-Scheme CuBi2O4/CuO Heterojunction for Selectively Photocatalytic CO2 Conversion to CO. Nanomaterials, 2022, vol. 12, no. 18

A. Hosen, M. S. Mian, and S. R. Al Ahmed. Simulating the performance of a highly efficient CuBi2O4-based thin-film solar cell. SN Appl. Sci., 2021, vol. 3, no. 5, p. 544

T. Arai, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama. -Throughput Screening Using Porous Photoelectrode for the Development of Visible-. J. Comb. Chem, 2007, vol. 9, no. 4, pp. 574–581

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins. Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J. Phys. Chem. C, 2012, vol. 116, no. 10, pp. 6459–6466

F. Wang, A. Chemseddine, F. F. Abdi, R. Van De Krol, and S. P. Berglund. Spray pyrolysis of CuBi2O4 photocathodes: Improved solution chemistry for highly homogeneous thin films. J. Mater. Chem. A, 2017, vol. 5, no. 25, pp. 12838–12847

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem. Mater., 2016, vol. 28, no. 12, pp. 4231–4242

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins. Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J. Phys. Chem. C, 2012, vol. 116, no. 10, pp. 6459–6466

A. Elaziouti, N. Laouedj, A. Bekka, and R. N. Vannier. Preparation and characterization of p-n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation. J. King Saud Univ. - Sci., 2015, vol. 27, no. 2, pp. 120–135

E. Abdelkader, L. Nadjia, and B. Ahmed. Preparation and characterization of novel CuBi2O4/SnO2 p–n heterojunction with enhanced photocatalytic performance under UVA light irradiation. J. King Saud Univ., 2015, vol. 27, no. 1, pp. 76–91

F. Guo, W. Shi, H. Wang, H. Huang, Y. Liu, and Z. Kang. Fabrication of a CuBi 2 O 4/gC 3 N 4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. Inorg. Chem. Front., 2017, vol. 4, no. 10, pp. 1714–1720

J. Lee et al. Long-term stabilized high-density CuBi 2 O 4/NiO heterostructure thin film photocathode grown by pulsed laser deposition. Chem. Commun., 2019, vol. 55, no. 83, pp. 12447–12450

S. A. Monny et al. Fabricating highly efficient heterostructured CuBi 2 O 4 photocathodes for unbiased water splitting. J. Mater. Chem. A, 2020, vol. 8, no. 5, pp. 2498–2504

R. Gottesman et al. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition. Adv. Funct. Mater., 2020, vol. 30, no. 21, p. 1910832

N.-W. Kim, B.-U. Choi, H. Yu, S. Ryu, and J. Oh. Formation of high-density CuBi 2 O 4 thin film photocathodes with polyvinylpyrrolidone-metal interaction. Opt. Express, 2019, vol. 27, no. 4, pp. A171–A183

V. Manjunath, Y. K. Reddy, S. Bimli, R. J. Choudhary, and R. S. Devan. 22% efficient Kusachiite solar cells of CuBi2O4 light harvester and ABO3 buffer layers: A theoretical analysis. Mater. Today Commun., 2022, vol. 32, p. 104061

Y. K. Reddy, V. Manjunath, S. Bimli, and R. S. Devan. Futuristic kusachiite solar cells of CuBi2O4 absorber and metal sulfide buffer Layers: Theoretical efficiency approaching 28%. Sol. Energy, 2022, vol. 244, pp. 75–83

S. E. Lachhab et al. Comparative evaluation of SnO2/CdS/CuBi2O4 structure performance based on SnO2 window layer numerical and experimental analysis. J. Indian Chem. Soc., 2022, vol. 99, no. 10, p. 100699

S. Lachhab, A. Bliya, H. Diyagh, S. Ouhssain, E. Al Ibrahmi, and L. Dlimi. Comparative evaluation of the numerical results carried out on the buffer layer in order to optimize the performance of the SnO2/CdS/CuBi2O4 structure. Optik (Stuttg)., 2022, vol. 265, p. 169406

M. N. Tousif, S. Mohammad, A. A. Ferdous, and M. A. Hoque. Investigation of Different Materials as Buffer Layer in CZTS Solar Cells Using SCAPS. J. Clean Energy Technol., Jul. 2018, vol. 6, pp. 293–296

F. Qiao, K. Sun, W. Liu, Y. Xie, and H. Chu. Bandgap modulation of ZnO/ZnS heterostructures through ion exchange and their efficient transport properties. Vacuum, 2022, vol. 196, p. 110788

L. Larina, D. Shin, J. H. Kim, and B. T. Ahn. Alignment of energy levels at the ZnS/Cu(In,Ga)Se 2 interface. Energy Environ. Sci., 2011, vol. 4, no. 9, pp. 3487–3493

Y. Ren et al. The key of ITO films with high transparency and conductivity: Grain size and surface chemical composition. J. Alloys Compd., 2022, vol. 893, p. 162304

R. Safa Sultana, A. N. Bahar, M. Asaduzzaman, and K. Ahmed. Numerical modeling of a CdS/CdTe photovoltaic cell based on ZnTe BSF layer with optimum thickness of absorber layer. Cogent Eng., 2017, vol. 4, no. 1, pp. 1–12

M. H. Ali et al. Numerical analysis of FeSi2 based solar cell with PEDOT: PSS hole transport layer. Mater. Today Commun., 2023, vol. 34, p. 105387

H. T. Ganem and A. N. Saleh. Enhancement of the efficiency of the CZTS/Cds/Zno/ITO Solar Cell by back reflection and buffer layers using SCAPS -1D. Iraqi J. Sci., 2021, vol. 62, no. 4, pp. 1144–1157

M. B. Hosen, A. N. Bahar, M. K. Ali, and M. Asaduzzaman. Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer. Data Br., 2017, vol. 14, no. August, pp. 246–250

K. Sobayel et al. Numerical modeling on prospective buffer layers for tungsten di-sulfide (WS2) solar cells by scaps-1D. Chalcogenide Lett., 2018, vol. 15, no. 6, pp. 307–315

S. Fadili, B. Hartiti, A. Kotbi, A. Ridah, and P. Thevenin. Numerical simulation of solar cells besed CZTS buffer layer (ZnO1-XSX) using SCAPS-1D software. J. Fundam. Appl. Sci., 2017, vol. 9, no. 2, pp. 1001–1011

S. Rai, B. K. Pandey, and D. K. Dwivedi. Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation. J. Phys. Chem. Solids, 2021, vol. 156, p. 110168

X. Zhou and J. Han. Design and simulation of C2N based solar cell by SCAPS-1D software. Mater. Res. Express, 2020, vol. 7, no. 12, p. 126303

K. Sarker, M. S. Sumon, M. Orthe, S. K. Biswas, and M. M. Ahmed. Numerical Simulation of High Efficiency Environment Friendly CuBi 2 O 4-Based Thin-Film Solar Cell Using SCAPS-1D. Int. J. Photoenergy, 2023, vol. 2023

F. Belarbi, W. Rahal, D. Rached, and M. Adnane. A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program. Optik (Stuttg)., 2020, vol. 216, p. 164743

T. Garmim et al. Effect of alternative buffer layers for SnS based solar cells: Numerical analysis using SCAPS-1D. Mater. Today Proc., 2022, vol. 66, pp. 146–150

P. Chelvanathan, M. I. Hossain, and N. Amin. Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys., 2010, vol. 10, no. 3, Supplement, pp. S387–S391

A. Sunny, S. Rahman, M. Khatun, and S. R. Al Ahmed. Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv., 2021, vol. 11, no. 6

M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou. Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia, 2015, vol. 74, pp. 736–744

A. Hosen, M. S. Mian, and S. R. Al Ahmed. Simulating the performance of a highly efficient CuBi 2 O 4-based thin-film solar cell. SN Appl. Sci., 2021, vol. 3, pp. 1–13

M. A. Rahman. Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy, 2021, vol. 215, pp. 64–76

Y. Cao et al. Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells, 2019, vol. 200, p. 109945

A. Hosen, S. Yeasmin, K. M. S. Bin Rahmotullah, M. F. Rahman, and S. R. Al Ahmed. Design and simulation of a highly efficient CuBi2O4 thin-film solar cell with hole transport layer. Opt. Laser Technol., 2024, vol. 169, p. 110073

Y. Wang et al. Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semicond. Sci. Technol., 2015, vol. 30, no. 5, p. 54004

S. Rahman and S. R. Al Ahmed. Photovoltaic performance enhancement in CdTe thin-film heterojunction solar cell with Sb2S3 as hole transport layer. Sol. Energy, 2021, vol. 230, pp. 605–617

M. N. H. Riyad, A. Sunny, M. M. Khatun, S. Rahman, and S. R. Al Ahmed. Performance evaluation of WS2 as buffer and Sb2S3 as hole transport layer in CZTS solar cell by numerical simulation. Eng. Reports, 2023, vol. 5, no. 5, p. e12600

I. Alam and M. A. Ashraf. Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance. Energy Sources, Part A Recover. Util. Environ. Eff., 2020, pp. 1–17

F. Anwar, S. Afrin, S. S. Satter, R. Mahbub, and S. M. Ullah. Simulation and performance study of nanowire CdS/CdTe solar cell. Int. J. Renew. Energy Res, 2017, vol. 7, no. 2, pp. 885–893.

Naureen, Sadanand, P. Lohia, D. K. Dwivedi, and S. Ameen. A comparative study of quantum dot solar cell with two different ETLs of WS2 and IGZO using SCAPS-1D simulator., in Solar, MDPI, 2022, pp. 341–353.

S. R. Al Ahmed, A. Sunny, and S. Rahman. Performance enhancement of Sb2Se3 solar cell using a back surface field layer: A numerical simulation approach. Sol. Energy Mater. Sol. Cells, 2021, vol. 221, p. 110919

A. R. Latrous, R. Mahamdi, N. Touafek, and M. Pasquinelli. Performance Enhancement in CZTS Solar Cells by SCAPS-1D. Int. J. Thin Film. Sci. Technol., 2021, vol. 10, no. 2, pp. 7

B. Drame, L. Niare, F. Yuegang, and C. Wang. Modeling of a New Solar Cell Model with ZnO/CdS Core-Shell Nanowire Arrays Embedded in a CZTS Absorber. J. Energy Technol. Policy, 2023, vol. 13, no. 1, pp. 1–14

H. Ali. Improving the efficiency of ZnTe based heterojunction solar cell with In2Te3 BSF layer. 2023

W. Yaseen Ali and M. Q. Kareem. Simulation of Thin-Film Solar Cells based on (CCZTSe) Using (SCAPS-1D) Program. J. Algebr. Stat., 2022, vol. 13, no. 2, pp. 902–913

S. Ahmmed, A. Aktar, M. F. Rahman, J. Hossain, and A. B. M. Ismail. A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik (Stuttg)., 2020, vol. 223, p. 165625

Refbacks

  • There are currently no refbacks.