Generating temperature cycle profiles of different solar photovoltaic module technologies from in-situ conditions for accurate prediction of thermomechanical degradation

Bebeto Nii Sampa Sampah, Frank K. A. Nyarko, Benjamin Atribawuni Asaaga, Jefferson Aggor


The IEC61215 TC200 is a rigorous approval thermal cycling test process that assesses the reliability of solar photovoltaic modules and offers a 25-year lifetime guarantee. However, previous research has shown that installed solar photovoltaic modules experience different rates of degradation depending on the location and climate with most research focused on crystalline silicon. In this study, outdoor weathering data obtained from a rig set up in Kumasi, Ghana for the year 2014, is used to generate thermal cycles for 5 different technologies including monocrystalline, polycrystalline, and amorphous silicon, Copper Indium Gallium Selenide (CIGS) and Heterojunction-With-Intrinsic-Thin-Layer (HIT). From the results, the highest yearly average of the maximum and minimum temperatures, and ramp rates of 54.8oC, 26.1oC, and 6.05oC/h respectively are recorded in CIGS. Polycrystalline recorded the least temperatures of 45.2°C and 23.9°C while HIT recorded the least ramp rate of 4.45°C /h. A comparison between the 2014 and the IEC61215 thermal cycles show extremely wide differences which could explain the higher degradation rates and shorter life of installed solar photovoltaic modules. The procedure adopted in this research can be repeated at different locations to obtain technology-specific thermal cycling profiles to evaluate the thermomechanical damage and predict the life of different solar photovoltaic modules.


Temperature cycling; Ramp rates; Temperature gradient; Dwell time; IEC 61215/61416; Co-efficient of Thermal Expansion (CTE); in-situ data generation

Full Text:



M. Aghaei et al., “Review of degradation and failure phenomena in photovoltaic modules,” Renewable and Sustainable Energy Reviews, vol. 159, 2022, pp. 112160, doi: 10.1016/j.rser.2022.112160.

V. Devabhaktuni et al., “Solar energy : Trends enabling technologies,” Renewable and Sustainable Energy Reviews, vol. 19, 2013, pp. 555–564, doi: 10.1016/j.rser.2012.11.024.

A. Smets, K. Jaeger, O. Isabella, R. Van Swaaij, M. Zeman, "Fundamentals, Technology and Systems, Solar energy,” vol. 1. uit cambridge ltd, 2016.

M. T. Zarmai, N. N. Ekere, C. F. Oduoza, E. H. Amalu, ” Optimization of thermo-mechanical reliability of solder joints in crystalline silicon solar cell assembly,” Microelectronics Reliability, 2015, pp. 117-125. doi:10.1016/j.microrel.2015.12.031 10.1016/j.microrel.2015.12.031

S. Chaparala, J. M. Pitarresi, and M. Meilunas, “Effect of Dwell Times and Ramp Rates on the Thermal Cycling Reliability of Pb-free Wafer- Level Chip Scale Packages-Experiments and Modeling.,” Conference: ASME International Mechanical Engineering Congress and Exposition, 2006, DOI : 10.1115/IMECE2006-13376

E. H. Amalu, D. J. Hughes, F. Nabhani, J. Winter, “Thermo-mechanical deformation degradation of crystalline silicon photovoltaic ( c-Si PV ) module in operation,” Eng. Fail. Anal., vol. 84, no. 2018, pp. 229–246, doi: 10.1016/j.engfailanal.2017.11.009.

D. Ghaderi, M. Pourmahdavi, " Combination of thermal cycling and vibration loading effects on the fatigue life of solder joints in a power module," Journal of Materials: Design and Applications, vol. 233, 2018, doi: 10.1177/1464420718780525.

C. B. Jones, B. Hamzavy, W. B. Hobbs, C. Libby, O. Lavrova, “IEC 61215 Qualification Tests vs Outdoor Performance using Module Level In Situ I-V Curve Tracing Devices,” 7th World Conference on Photovoltaic Energy Conversion, 2018, DOI: 10.1109/PVSC.2018.8548222

G. Cuddalorepatta, A. Dasguptal, S. Sealing, J. Moyer, T. Tolliver, J. Loman, “durability of pb-free solder connection between copper interconnect wire and crystalltne silicon solar cells,” 2006, DOI: 10.1109/ITHERM.2006.1645486

S. P. Aly, S. Ahzi, N. Barth, A. Abdallah, “Numerical analysis of the reliability of photovoltaic modules based on the fatigue life of the copper interconnects,” Solar Energy, vol. 212, no. April, 2020, pp. 152–168, doi: 10.1016/j.solener.2020.10.021.

S. M. Shamim, M. B. Science, S. Islam, F. Huq, “Design , performance analysis and efficiency optimization of copper indium gallium selenide ( cigs ) solar cell,” European Scientific Journal, vol.11, No.6, 2015.

L. M. Fraas, “The Dream of Thin Film PV,” in Low-Cost Solar Electric Power, ” Springer International Publishing, 2014, pp. 73–79.

F. K. A. Nyarko, G. Takyi, E. H. Amalu, M. S. Adaramola, “Generating temperature cycle profile from in-situ climatic condition for accurate prediction of thermo-mechanical degradation of c-Si photovoltaic module,” Engineering Science and Technology, an International Journal, 2018, doi: 10.1016/j.jestch.2018.12.007

U. Eitner, S. Kajari-schr, K. Marc, and H. Altenbach, “Thermal Stress and Strain of Solar Cells in Photovoltaic Modules,” Part of the Advanced Structured Materials book series, 2011, pp. 453–468.

N. Park, J. Jeong, C. Han, “Microelectronics Reliability Estimation of the degradation rate of multi-crystalline silicon photovoltaic module under thermal cycling stress,” Microelectron. Reliab, Microelectronics Reliability, vol . 54 , 2014, pp. 1562–1566, doi:10.1016/j.microrel.2014.03.021

N. Amin, C. Wen, K. Sopian, “A practical field study of various solar cells on their performance in Malaysia,” Renew. Energy, vol. 34, no. 8, 2009, pp. 1939–1946, doi: 10.1016/j.renene.2008.12.005.

F. K. Nyarko, Afriyie, G. Takyi, A. A. Agyemang, C. S. K. Kofi, “Crystalline Silicon ( c-Si ) Solar Cell interconnect damage prediction function based on effect of temperature ramps and dwells on creep damage under field thermal cycling,” Crystals and Thin Films , 2021, vol. 633 ,

O. M. Al-habahbeh, B. A. Al-hrout, E. A. Al-hiary, S. A. Al-fraihat, “Durability Prediction of Thin-film PV Modules Durability Prediction of Thin-film PV Modules,” Int’l J. Eng. Simulation with Indust. Applications (IJES), vol. 15, 2014, pp.13-21.

W. Herrmann, N. Bogdanski, F. Reil, K.-A. Weiss, M. Assmus, M. Heck, “PV module degradation caused by thermomechanical stress : real,” Reliability of Photovoltaic Cells, Modules, Components, and Systems III. doi:10.1117/12.859809

S. C. Chaparala et al., “Effect of Geometry and Temperature Cycle on the Reliability of WLCSP Solder Joints,” IEEE Transactions on Components and Packaging Technologies, 2005, pp. 441–448.

K. Owusu, P. R. Waylen, “The changing rainy season climatology of mid-Ghana,” Theoretical and Applied Climatology, vol 112, 2012, pp. 419–430, doi:10.1007/s00704-012-0736-5

X. Fan, G. Raiser, V. S. Vasudevan, “Effects of dwell time and ramp rate on lead-free solder joints in fcbga packages,” Proceedings Electronic Components and Technology, 2005, DOI: 10.1109/ECTC.2005



  • There are currently no refbacks.

Copyright (c) 2023 International Journal of Energetica

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
The content of this journal is licenced under a Creative Commons Attribution-NonCommercial 4.0 International License