Heat Exchanger Design for the Production of Synthesized Gold Nanoparticles

Thyta Medina Salsabila Erlangga, Asep Bayu Dani Nandiyanto, Risti Ragadhita, Teguh Kurniawan


This study aims to develop and analyze the design of heat exchangers in the production of gold nanoparticles (AuNPs) by the biosynthesis method using Sargassum horneri (SH) extract. The simple design of this heat exchanger (HE) uses the shell and tube type, the one-pass tube, and the fluids are water. Other specifications for a HE design are the tube length is 4.267 m, the shell diameter is 254 mm, the outer tube diameter is 22.225 mm, the inner tube diameter is 21.184 mm, the wall thickness is 2.1082 mm, and the pitch tube is 31.75 mm. Based on manual calculations using Microsoft Excel, the results show that this design has laminar flow as indicated by the Reynolds value. In addition, the HE designs has an effectiveness value of 98.98% with an NTU value of 11.50. In this study, the HE designs results have a high effectiveness value, so it can be considered effective for use in producing gold nanoparticles with SH extract. Therefore, this HE designs analysis can be used as a learning medium in the HE designs process, the operating mechanism, and the performance analysis of the HE. 


heat exchanger, shell and tube, gold nanoparticles, Sargassum horneri

Full Text:



J. Zhang, X. Zhu, M. E. Mondejar, and F. Haglind, “A review of heat transfer enhancement techniques in plate heat exchangers,” Renew. Sustain. Energy Rev., vol. 101, pp. 305–328, 2019, doi: 10.1016/j.rser.2018.11.017.

A. Hajatzadeh Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, and S. Wongwises, “An updated review on application of nanofluids in heat exchangers for saving energy,” Energy Convers. Manag., vol. 198, no. April, p. 111886, 2019, doi: 10.1016/j.enconman.2019.111886.

S. Muthukrishnan, H. Krishnaswamy, S. Thanikodi, D. Sundaresan, and V. Venkatraman, “Support vector machine for modelling and simulation of heat exchangers,” Therm. Sci., vol. 24, no. 1PartB, pp. 499–503, 2020, doi: 10.2298/TSCI190419398M.

K. Cruse et al., “Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities,” Sci. Data, vol. 9, no. 1, pp. 1–12, 2022, doi: 10.1038/s41597-022-01321-6.

M. Yari and N. Javanmardi, “Multifunctional Gold nanoparticle : as novel agents for cancer treatment,” J. Adv. Appl. NanoBio-Technologies, vol. 3, no. 2, pp. 43–48, 2022.

M. Abbas, H. H. Susapto, and C. A. E. Hauser, “Synthesis and Organization of Gold-Peptide Nanoparticles for Catalytic Activities,” ACS Omega, vol. 7, no. 2, pp. 2082–2090, 2022, doi: 10.1021/acsomega.1c05546.

W. C. Song, B. Kim, S. Y. Park, G. Park, and J. W. Oh, “Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation,” Arab. J. Chem., vol. 15, no. 9, p. 104056, 2022, doi: 10.1016/j.arabjc.2022.104056.

T. D. Tran, M. T. T. Nguyen, H. V. Le, D. N. Nguyen, Q. D. Truong, and P. D. Tran, “Gold nanoparticles as an outstanding catalyst for the hydrogen evolution reaction,” Chem. Commun., vol. 54, no. 27, pp. 3363–3366, 2018, doi: 10.1039/c8cc00038g.

X. Lu, X. Dong, K. Zhang, X. Han, X. Fang, and Y. Zhang, “A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer,” Analyst, vol. 138, no. 2, pp. 642–650, 2013, doi: 10.1039/c2an36099c.

D. Lin, R. G. Pillai, W. E. Lee, and A. B. Jemere, “An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G,” Microchim. Acta, vol. 186, no. 3, pp. 1–9, 2019, doi: 10.1007/s00604-019-3282-3.

M. A. MacKey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-Sayed, “The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments,” J. Phys. Chem. B, vol. 118, no. 5, pp. 1319–1326, 2014, doi: 10.1021/jp409298f.

J. Cheng, Y. J. Gu, S. H. Cheng, and W. T. Wong, “Surface functionalized gold nanoparticles for drug delivery,” J. Biomed. Nanotechnol., vol. 9, no. 8, pp. 1362–1369, 2013, doi: 10.1166/jbn.2013.1536.

J. Im et al., “Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes,” ACS Appl. Nano Mater., vol. 5, no. 5, pp. 6708–6716, 2022, doi: 10.1021/acsanm.2c00742.

K. Nejati, M. Dadashpour, T. Gharibi, H. Mellatyar, and A. Akbarzadeh, “Biomedical Applications of Functionalized Gold Nanoparticles: A Review,” J. Clust. Sci., vol. 33, no. 1, 2022, doi: 10.1007/s10876-020-01955-9.

C. Kamaraj et al., “Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered,” Environ. Res., vol. 213, 2022, doi: 10.1016/j.envres.2022.113711.

M. Sivakavinesan et al., “Citrus limetta Risso peel mediated green synthesis of gold nanoparticles and its antioxidant and catalytic activity,” J. King Saud Univ. - Sci., vol. 34, no. 7, p. 102235, 2022, doi: 10.1016/j.jksus.2022.102235.

M. Hosny, M. Fawzy, Y. A. El-Badry, E. E. Hussein, and A. S. Eltaweil, “Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications,” J. Saudi Chem. Soc., vol. 26, no. 2, p. 101419, 2022, doi: 10.1016/j.jscs.2022.101419.

A. Aji, D. Oktafiani, A. Yuniarto, and A. K. Amin, “Biosynthesis of gold nanoparticles using Kapok (Ceiba pentandra) leaf aqueous extract and investigating their antioxidant activity,” J. Mol. Struct., vol. 1270, no. August, p. 133906, 2022, doi: 10.1016/j.molstruc.2022.133906.

N. Ahmad, S. Sharma, and R. Rai, “Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum,” Adv. Mater. Lett., vol. 3, no. 5, pp. 376–380, 2012, doi: 10.5185/amlett.2012.6357.

S. Ayyoub et al., “Biosynthesis of gold nanoparticles using leaf extract of Dittrichia viscosa and in vivo assessment of its anti-diabetic efficacy,” Drug Deliv. Transl. Res., vol. 12, no. 12, pp. 2993–2999, 2022, doi: 10.1007/s13346-022-01163-0.

A. Folorunso et al., “Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata,” J. Nanostructure Chem., vol. 9, no. 2, pp. 111–117, 2019, doi: 10.1007/s40097-019-0301-1.

S. Valsalam, P. Agastian, G. A. Esmail, A. K. M. Ghilan, N. A. Al-Dhabi, and M. V. Arasu, “Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy,” J. Photochem. Photobiol. B Biol., vol. 201, p. 111670, 2019, doi: 10.1016/j.jphotobiol.2019.111670.

A. E. Adebayo et al., “Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties,” Nanotechnol. Environ. Eng., vol. 4, no. 1, 2019, doi: 10.1007/s41204-019-0060-8.

V. Kumar and S. K. Yadav, “Plant-mediated synthesis of silver and gold nanoparticles and their applications,” J. Chem. Technol. Biotechnol., vol. 84, no. 2, pp. 151–157, 2009, doi: 10.1002/jctb.2023.

P. Stehlík, “Conventional versus specific types of heat exchangers in the case of polluted flue gas as the process fluid - A review,” Appl. Therm. Eng., vol. 31, no. 1, pp. 1–13, 2011, doi: 10.1016/j.applthermaleng.2010.06.013.

A. B. D. Nandiyanto, S. R. Putri, R. Ragadhita, and T. Kurniawan, “Design of Heat Exchanger for the Production of Carbon Particles,” J. Eng. Sci. Technol., vol. 17, no. 4, pp. 2788–2798, 2022.

A. M. Flynn, T. Akashige, and L. Theodore, Kern’s Process Heat Transfer Second Edition. Beverly: Scrivener Publishing, 2019.

O. Evju, “Computational hemodynamics in cerebral aneurysms : Robustness of rupture risk indicators under different model assumptions,” 2016.

DOI: http://dx.doi.org/10.47238/ijeca.v7i2.203


  • There are currently no refbacks.

Copyright (c) 2023 International Journal of Energetica

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
The content of this journal is licenced under a Creative Commons Attribution-NonCommercial 4.0 International License