Simulation of Night Cooling Through Natural cross Ventilation using ANSYS (Fluent)

Yamina Harnane, Sihem Bouzid, Sonia Berkane, Abdelhafid Brima, Abdelmadjid Kaddour

Abstract


In this study, we carried out a numerical simulation using CFD code “Fluent 14.0” to quantify night ventilation due to convective and radiative phenomena with well-defined boundary conditions. The configuration is an open square cavity. Top & bottom walls are adiabatic, however, vertical walls represent the left/interior wall and right/external wall provided with a top and a bottom opening, at Tcold & Thot temperatures, respectively. The computational domain is two-dimensional with open boundary conditions of the local Bernoulli type. The fluid is incompressible with Boussinesq's approximation and flow regime is stationary turbulent with k-ε RNG model on a 200 * 240 mesh refined near the walls, (ΔT = 10 °C). The obtained results allowed flow dynamics & thermal characterization as well as cooling integral quantities calculation. Introduction of surface emissivity influences heat transfer via active walls and increases (decreases) the lower (upper) passive wall temperature, while no effect was noted on the dynamics.


Keywords


thermal comfort, simulation, ventilation, open cavity, natural convection

Full Text:

PDF

References


FLUENT User’s Guide, Fluent Inc., Release 14.0, November 2011

V. Yakhot, S. A. Orszag, “Renormalization group analysis of turbulence I, Basic theory, Journal of Scientific Computing, Vol. 1, No 1, 1986, pp. 3-51.

A. Ibrahim, D. Saury, D. Lemonnier, “Coupling of turbulent natural convection with radiation in an air-filled differentially-heated cavity at Ra = 1.5*109”, Computers & Fluids, Vol. 88, 2013, pp.115–125.

W. Fiveland, “Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures”, Journal of Heat Transfer, Vol. 106, 1984, pp. 699–706.

B. Brangeon,, “Contribution à l’étude numérique de la ventilation naturelle dans des cavités ouvertes par la simulation des grandes échelles. Application au rafraîchissement passif des bâtiments“. Thèse de Doctorat Université de la Réunion, 2012.

M. Ning, S. Mengyin, P. Dongmei, D. Shiming, Computational fluid dynamics (CFD) modeling of air flow field, mean age of air and CO2 distributions inside a bedroom with different heights of conditioned air supply outlet. Applied Energy, Vol. 164, 2016 pp. 906-916.

Z. Younsi, L. Koufi, H. Naji, Numerical study of the effects of ventilated cavities outlet location on thermal comfort and air quality. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29. No 11, 2019 pp. 4462-4483.

N. Gupta, A. K. Nayak, S. Malik, Conjugate heat and species transport in an air-filled ventilated enclosure with a thermo-contaminated block. IJHMT, Vol. 117. 2018, pp. 388-411

F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J, Vol. 32. No 8, 1994 pp. 1598–1605.

C. Hu. T. Kurabuch, M. Ohba. Numerical study of cross-ventilation using two equation RANS turbulent models. Int J Ventilation, Vol.4. No 2, 2005, pp.123–132.

A. Stamou, I. Katsiris. Verification of a CFD model for indoor airflow and heat transfer. Build Environment. Vol. 41, 2006, pp. 1171–1181.

G. D. Raithby, E. H. Chui. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J Heat Transfer. Vol. 112. No 2, 1990, pp. 415-423.

V. Chanteloup, P. S. Mirade. "Computational fluid dynamics (CFD) modelling of local mean age of air distribution in forced-ventilation food plants". J Food Engineering. Vol. 90, No 1,2009, pp. 90-103.

J. Rydberg J and P. Norback, “Air Distribution and Draft”, ASHRAE Transactions, 1949, pp. 55-225.

A. Koestel and G. L. Tuve. “Performance and Evaluation of Room Air Distribution Systems”, ASHRAE Transactions, 1955, pp. 61-533

A. F. Alfahaid, Effects of ventilation on human thermal comfort in rooms, Ph. D Thesis, old dominion university, Norfolk, Virginia 2000.

H. Wang, S. Xin, P Le Quéré, “Etude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d’air “. C




DOI: http://dx.doi.org/10.47238/ijeca.v6i1.146

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 International Journal of Energetica

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
The content of this journal is licenced under a Creative Commons Attribution-NonCommercial 4.0 International License