The electrical properties of Au/GaN and PEDOT: PSS/GaN diodes

Ali Sadoun, Imad Kemerchou ...

Abstract


In the present paper, using a numerical simulator, the simulation of Au/n-GaN and PEDOT: PSS/GaN structures were performed in a temperature at room temperature. The electrical parameters: barrier height, ideality factor, shunt resistance series, and resistance have been calculated using different methods: conventional I-V, Norde, Chattopadhyay, and Mikhelashvili. Statistical analysis showed that the Au/GaN structure has a barrier height of (0.6 eV) which is higher compared with the PEDOT: PSS/GaN structure (0.72 eV) and ideality factor (1.88 and 2.26) respectively. The values of resistance shunt were increased from 77150.056 Ω to 11207586 Ω. It is observed that the leakage current increased from 6.64E-5 to 4.98926E-5A at −0.85 V.


Full Text:

PDF

References


S. Asubay, Ö. Güllü, A. Türüt, "Determination of the laterally homogeneous barrier height of metal/ p- InP Schottky barrier diodes", Vacuum, Vol. 83, No. 3, 2009, pp. 1470-1474.

J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P. Nilsson, J.P. Starski, N. Wadefalk, H. Zirath, J. Grahn, "Cooled integrated circuit amplifies with lowest noise so far", IEEE Electron Device Letters, Vol. 33, No. 5, 2012, pp. 664-666.

F. Acar, A. Buyukbas-Ulusan, A. Tataroglu, “properties of Al/coumarin doped Pr2Se3–Tl2Se/p-Si devices", Journal of Materials Science: Materials in Electronics, Vol. 29, No. 15, 2018, pp. 1-8.

S. Adachi, “Group-IV, III-V and II-VI semiconductors”, John Wiley & Sons, 2009, ISBN: 978-0-470-74369-0.

K. Hattori, Y. Torii, “platform of peer-reviewed scholarly literature”, Solid-State Electronics, Vol. 34, No. 5, 1991, pp. 429-534.

A. Singh, K. Reinhardt, W. Anderson, “Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions”, Journal of applied physics, Vol. 68, 1990, pp. 3475-3483.

T. Enoki, H. Yokoyama, Y. Umeda, T. Otsuji, “Ultrahigh-Speed Integrated Circuits Using InP-Based HEMTs ”, Journal of applied physics, Vol. 37, No. 3B, 1998, pp. 1359-1364.

K. Pande, “Characteristics of MOS solar cells built on /n-type/ In P substrates”, IEEE Transactions on Electron Devices, Vol. ED-27, 1980, pp. 631-634.

K. Zeghdar, L. Dehimi, A. Saadoune, N. Sengouga, “IInhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode ”, Journal of Semiconductors, Vol. 36, No. 12, 2015, article id. 124002

N. Balaram, V.R. Reddy, P.S. Reddy, V. Janardhanam, C.-J. Choi, “Microstructural, chemical states and electrical properties of Au/CuO/n-InP heterojunction with a cupric oxide interlayer”, Vacuum, Vol. 152, 2018, pp. 15-24.

M. Benchehima, H. Abid, A. Sadoun, A.C. Chaouche, "Optoelectronic properties of aluminium bismuth antimony ternary alloys for optical telecommunication applications: First-principles calculation ", Computational Materials Science, Vol. 155, 2018, pp. 224-234

M. Cao, P.V. Voorde, M. Cox, W. Greene, Boron diffusion and penetration in ultrathin oxide with poly-Si gate, IEEE Electron Device Letters, Vol 19, 1998, pp. 291-293.

S. Atlas, Silvaco International Software, Santa Clara, CA, USA, 2005.

A. Sadoun, S. Mansouri, M. Chellali, A. Hima, and Z. Benamara, "The effect of introduction of HfO2 on the electrical characterization of the Pt/HfO 2/n-GaN," in 2018 International Conference on Communications and Electrical Engineering (ICCEE) ", 2018, pp. 1-4. .

A.U.s. Manual, Silvaco Int., Santa Clara, CA, 2008.

J. Dziewior, W. Schmid, “Auger coefficients for highly doped and highly excited silicon”, Applied Physics Letters, Vol 31, 1977, pp. 346-348.

F. Zappa, P. Lovati, A. Lacaita, “Temperature dependence of electron and hole ionization coefficients in InP”, Proceedings of 8th International Conference on Indium Phosphide and Related Materials, IEEE, 1996, pp. 628-631.

C. Crowell, S. Sze, “Current transport in metal-semiconductor barriers”, Solid-State Electronics, Vol 9, 1966, pp. 1035-1048.

M. Ieong, P.M. Solomon, S. Laux, H.-S. Wong, D. Chidambarrao, “Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model”, International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217), IEEE, 1998, pp. 733-736.

S.M. Sze, K.K. Ng, Book: Physics of semiconductor devices, Print ISBN:9780471143239, John Wiley & sons, 2006.

A. Sadoun, S. Mansouri, M. Chellali, N. Lakhdar, A. Hima, and Z. Benamara, "Investigation, analysis and comparison of current-voltage characteristics for Au/Ni/GaN Schottky structure using IVT simulation", Materials Science-Poland, Vol. 37, 2019, pp. 496-502.

A. Sadoun, I. Kemerchou, “Extraction of the electrical parameters of the Au/InSb/InP Schottky diode in the temperature range (300 K- 425 K) ”, International Journal of Energetica (IJECA), Vol. 5, No. 1, 2020, pp. 31-36.

R. Padma, B. P. Lakshmi, M. S. P. Reddy, and V. R. Reddy, "Electrical and structural properties of Ir/Ru Schottky rectifiers on n-type InGaN at different annealing temperatures", vol. 56, 2013, pp. 64-76.

V. R. Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, and C.-J. Choi, "Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer", Vol. 43, 2014, pp. 3499-3507.

H. Norde, “A modified forward I‐V plot for Schottky diodes with high series resistance”, Journal of Applied Physics, Vol 50, 1979, pp. 5052.

A. Kocyigit, I. Orak, Z. Çaldıran, A. Turut, “Current-voltage characteristics of Au/ZnO/n-Si device in a wide range temperature”, J Mater Sci: Mater Electron, Vol 28, 2017, pp. 17177–17184.

P. Chattopadhyay, “A new technique for the determination of barrier height of Schottky barrier diodes”, Solid-state electronics, Vol 38,1995, pp. 739-741.

Ş. Karataş, N. Yildirim, A. Türüt, “Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode”, Superlattices and Microstructures, Vol 64, 2013, pp. 483-494.




DOI: http://dx.doi.org/10.47238/ijeca.v5i2.137

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 International Journal of Energetica

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
The content of this journal is licenced under a Creative Commons Attribution-NonCommercial 4.0 International License