Numerical and experimental characterization of internal heat and mass transfer during convective drying of papaya (Carica papaya L.) in a drying air stream

Gildas Armel Fouakeu-nanfack, Serge Kewou, Felix Junior Ngouem, Abraham Tetang Fokone, Marcel Edoun, Belkacem Zeghmati


This work consisted of simulating convective heat and mass transfers during the drying of papaya in a parallel air stream. The aim of this work was to simultaneously couple the two-dimensional heat and mass transfer equations in the product in order to predict the drying kinetics of the papaya. These papaya slices were arranged on a rack with a length (L) of 30 cm and thickness (E) of 5 mm. The Luikov equations thus established for this model were discretized using the implicit finite difference method and then solved simultaneously using the Matlab 2014 tool. Simulations of papaya drying were performed under the influence of drying air temperature (40, 50, and 60 °C), drying air velocity (0.5, 1 and 1.76 m/s), relative air humidity (20, 40, and 60%), and product thickness (4, 5, and 6 mm). The numerical simulation results allowed the prediction of the temperature and humidity distributions inside the product during the drying process. The predicted data from this model were compared to the experimental data. The results showed agreement between the predicted and experimental data with average relative errors of 5.21% and 4.35% for moisture ratio and product temperature, respectively.


Characterization, Heat and mass transfer, Convective drying, Air stream

Full Text:



F. Akter, R. Muhury, A. Sultana, U. K. Deb, ‘‘ A Comprehensive Review of Mathematical Modeling for Drying Processes of Fruits and Vegetables ", International Journal of Food Science, Vol. 2022, pp. 1‑10, 2022, doi: 10.1155/2022/6195257.

A. M. Castro, L. E. Díaz, M. X. Quintanilla-Carvajal, E. Y. Mayorga, F. L. Moreno, ‘‘ Convective drying of feijoa (Acca sellowiana Berg): A study on bioactivity, quality, and drying parameters ", LWT, Vol. 186, pp. 115209, 2023, doi: 10.1016/j.lwt.2023.115209.

A. O. Omolola, A. I. Jideani, P. F. Kapila, ‘‘ Quality properties of fruits as affected by drying operation ", Critical reviews in food science and nutrition, Vol. 57, no 1, pp. 95‑108, 2017, doi: 10408398.2013.859563.

J.-P. Nadeau J.-R. Puiggali, ‘‘ Sechage: des processus physiques aux procedes industriels", 1995.

N. G. A. Fouakeu, F. A. Tetang, M. Edoun, A. Kuitche, et B. Zeghmati, ‘‘ A contribution to a numerical characterization of the thermal transfers in a saw tooth solar collector ", International Journal of Thermal Technologies, Vol. 9, no 3, pp. 200‑206, 2019, doi:

A. S.-S. Stegou–Sagia , A. Fragkou, ‘‘ Thin layer drying modeling of apples and apricots in a solar-assisted drying system", Journal of Thermal Engineering, Vol. 4, no 1, pp. 1680‑1691, 2018, doi:

A. Stegou-Sagia, D. Fragkou, ‘‘ Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms ", Journal of Thermal Engineering, Vol. 1, no 4, pp. 235‑244, 2015, doi:

Y. R. Ekani, T. F. Abraham, E. Marcel, K. Alexis, ‘‘ Experimental Study of the Drying Kinetics of Mango (mangifera indica L.) during Airflow Drying Licking Countercurrent", American Journal of Food Science and Technology, Vol. 7, no 4, pp. 127‑132, 2019, doi: 10.12691/ajfst-7-4-4.

A. Kushwah, G. Mk, A. Kumar, P. Singh, ‘‘ Application of ANN and prediction of drying behavior of mushroom drying in side hybrid greenhouse solar dryer: An experimental validation", Journal of Thermal Engineering, Vol. 8, no 2, pp. 221‑234, 2021, doi: 10.14744/jten.2021.0006.

G. A. Fouakeu-nanfack, G. T. N. Wilfred, M. Balbine, E. Marcel, Z. Belkacem, ‘‘ Experimental characterization of convective drying of papaya (Carica papaya L.) to licking airflow", International Journal of Current Engineering and Technology, 2023, doi:

P. Chen, N. Chen, W. Zhu, D. Wang, M. Jiang, C. Qu, Yu Li; Z. Zou, ‘‘ A Heat and Mass Transfer Model of Peanut Convective Drying Based on a Two-Component Structure", Foods, Vol. 12, no 9, Art. no 9, janv. 2023, doi: 10.3390/foods12091823.

G. Takamte, M. Edoun, L. Monkam, A. Kuitche, R. Kamga, ‘‘ Numerical Simulation of Convective Drying of Mangoes (mangifera Indica L.) Under Variable Thermal Conditions " International Journal of Thermal Technologies, Vol. 3, no 2, pp. 48-52, 2013.

D. A. Tzempelikos, D. Mitrakos, A. P. Vouros, A. V. Bardakas, A. E. Filios, D. P. Margaris, ‘‘ Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices", Journal of Food Engineering, Vol. 156, pp. 10-21, 2015, doi:

A. Kaya, O. Aydın, C. Demirtaş, ‘‘ Drying kinetics of red delicious apple", Biosystems Engineering, vol. 96, no 4, pp. 517-524, 2007.

W. P. Da-Silva, C. M. e Silva, et J. P. Gomes, ‘‘ Drying description of cylindrical pieces of bananas in different temperatures using diffusion models", Journal of Food Engineering, vol. 117, no 3, pp. 417-424, 2013, doi:

J. A. Esfahani, H. Majdi, E. Barati, ‘‘ Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: apple slices", Journal of Food Engineering, Vol. 123, pp. 87-93, 2014, doi:

L. Lagunez-Rivera, I. I. Ruiz-López, M. A. García-Alvarado, M. A. Salgado-Cervantes, ‘‘ Mathematical simulation of the effective diffusivity of water during drying of papaya", Drying Technology, Vol. 25, no 10, pp. 1633-1638, 2007, doi:

B. Mocelin, L. Oliveira Jr. Daliomar , P. Daniel Chielle, H. Eduardo Tanabe, A. Daniel Bertuol, M. Schwaab, L. Meili show less., ‘‘ Mathematical modeling of thin layer drying of papaya seeds in a tunnel dryer using particle swarm optimization method", Particulate Science and Technology, Vol. 32, no 2, pp. 123-130, 2014, doi:

G. L. Dotto, L. Meili, E. H. Tanabe, D. P. Chielle, M. F. P. Moreira, ‘‘ Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models", Heat and Mass Transfer, Vol. 54, no 2, pp. 463-471, 2018, doi:

R. D. Loss, I. P. Santos, E. P. Muniz, J. R. C. Proveti, P. S. S. Porto, ‘‘ Finite difference solutions for heat transfer during drying of cubic papaya particles ", Procedia Food Science, Vol. 1, pp. 753-761, 2011.

B. Matuam, N. Gnepie, J. Fotsa, A. Tetang, M. Edoun, E. Alexis Kuitche, ‘‘ Numerical Simulation of Heat and Moisture Transfer in Corrugated Walls Dryer", AE, Vol. 7, no 1, pp. 1-10, 2023, doi: 10.11648/

F. J. Ngouem, M. Edoun, L. Monkam, A. Tetang, ‘‘ Simulation of Convective Drying with Shrinkage using the Finite Window Method: Application and Validation", American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), Vol. 78, no 1, pp. 39-49, 2021.

S. Nansereko, J. Muyonga, Y. B. Byaruhanga, ‘‘ Influence of Drying Methods on Jackfruit Drying Behavior and Dried Products Physical Characteristics", International Journal of Food Science, Vol. 2022, p. e8432478, sept. 2022, doi: 10.1155/2022/8432478.

R. Y. Ekani, F. A. Tetang, M. Edoun, A. Kuitche, ‘‘ Airflow Drying Licking Countercurrent of Mango (Mangifera Indica L): Experimental Determination of Drying Parameters", International Journal for Research in Applied Science & Engineering Technology Technology (IJRA), pp. 441-445, .22214/ijraset.2022.46052 2022.

M. Edoun, B. Matuam, A. Kuitche, ‘‘ Mathematical modelling of thin layer mangoes (Mangifera indica L.) drying process", International Journal of Current Engineering and Technology, Vol. 4, no 5, pp. 3672-3676, 2014.

R. Golestani, A. Raisi, A. Aroujalian, ‘‘ Mathematical modeling on air drying of apples considering shrinkage and variable diffusion coefficient », Drying Technology, Vol. 31, no 1, pp. 40-51, 2013, doi:

R. A. Lemus-Mondaca, C. E. Zambra, A. Vega-Gálvez, N. O. Moraga, ‘‘ oupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices", Journal of Food Engineering, vol. 116, no 1, pp. 109-117, mai 2013, doi: 10.1016/j.jfoodeng.2012.10.050.

Y. Jannot, ‘‘ Transferts thermiques. Ecole des Mines Nancy ». 2012.

L. Villa-Corrales, J. J. Flores-Prieto, J. P. Xamán-Villaseñor, E. García-Hernández, ‘‘ Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango", Journal of food engineering, Vol. 98, no 2, pp. 198-206, 2010, doi:

H. T. Sabarez, ‘‘ Computational modelling of the transport phenomena occurring during convective drying of prunes », Journal of Food Engineering, Vol. 111, no 2, pp. 279-288, juill. 2012, doi:

Z. Wang, J. Sun, X. Liao, F. Chen, G. Zhao, J. Wu, X. Hu, ‘‘ Mathematical modeling on hot air drying of thin layer apple pomace", Food Research International, vol. 40, no 1, p. 39‑46, 2007.

M. K. Krokida, V. T. Karathanos, Z. B. Maroulis, D. Marinos-Kouris, ‘‘ Drying kinetics of some vegetables », Journal of Food engineering, Vol. 59, no 4, pp. 391-403, 2003.

E. Tarigan, G. Prateepchaikul, R. Yamsaengsung, A. Sirichote, P. Tekasakul, ‘‘ Drying characteristics of unshelled kernels of candle nuts", Journal of Food Engineering, Vol. 79, no 3, pp. 828-833, 2007.

H. Tavakolipour, ‘‘ Drying kinetics of pistachio nuts (Pistacia vera L.) », World Applied Sciences Journal, vol. 12, no 9, p. 1639‑1646, 2011.

J. A. Pandith, ‘‘ Induction heating assisted foam mat drying of papaya pulp: drying kinetics, drying modeling, and effects on quality attributes", Agricultural Engineering International: CIGR Journal, Vol. 20, no 2, pp. 206-215, 2018, doi:

A. Kaya, O. Aydın, I. Dincer, ‘‘ Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch) ", Journal of Food Engineering, Vol. 88, no 3, pp. 323‑330, oct. 2008, Consulté le: 17 juin 2021. [En ligne]. Disponible sur:


  • There are currently no refbacks.

Copyright (c) 2023 International Journal of Energetica

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
The content of this journal is licenced under a Creative Commons Attribution-NonCommercial 4.0 International License