Simulation of different modes of heat transfer on a parabolic trough solar collector

Loubna Benhabib, Yacine Marif, Zakia Hadjou Belaid, Abdelmadjid Kaddour, Boumediène Benyoucef, Michel Aillerie

Abstract


The development of solar concentrator technology has just reached a very significant level. Using reflectors to concentrate the sun's rays on the absorber dramatically reduces the size of the absorber, reducing heat loss and increasing its efficiency at high temperatures. Another advantage of this system is that the reflectors are significantly less expensive, per unit area, than the flat collectors. To determine the performances of a cylindrical-parabolic concentrator, mathematical modeling of the heat balance on the absorber, the coolant, and the glass envelope was established using Matlab. The system of equations obtained is solved by the finite difference method. The results for a typical day are the variation in the temperature of the heat transfer fluid, the absorber tube, and the glass envelope. Thus, we examine the effect of the wind speed, flow rate on the temperature distribution of the coolant at the outlet. However, for a mass flow rate of the fluid of 0.1 kg / s, the outlet temperature of the fluid is 85 ° C with a thermal efficiency of 73%. Excluding the energy absorbed by the absorber tube is 75% of the solar intensity received on the reflector.


Keywords


Parabolic trough collector, Solar thermal energy, Simulation, Heat transfer, Solar concentrator.

Full Text:

PDF

References


J. D. Balcomb, R. W. Jones, C. E. Kosiewicz, G. S. Lazarus, R. D. Mc Farland, W. O Wray, « PassiveSolar Design Handbook », Volume 3, American Solar Energy Society, 1982.

S. Mihoub, Effect of Design Parameters on The Performance of DSG Linear Fresnel Solar Power Plant, Int. J. Energy Clean Environ, Vol 22, No 2, 2021, pp. 65-81.

K. Ogilvie, ‘L’Abc des Technologies de l’Energie Renouvelable’, Pollution Probe, Canada, September 2003

S. Quezada-Garcia, H. Sanchez-Mora, A.M. Polo- R.I Labarrios,. Cazares-Ramirez, Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system, Case Studies in Thermal Engineering, Vol 16, 2019, pp.100523.

I.H. Yilmaz, A., Mwesigye, Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review, Applied Energy, Vol 225, 2018, pp. 135-174.

R. Forristall, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. National Renewable Energy Laboratory (NREL), Golden, 2003.

Charlain-Joel Ngangoum Keou, Donatien Njomo, Vincent Sambou « Two-Dimension Numerical Simulation of Parabolic Trough Solar Collector: Far North Region of Cameroon," March 31, 2017.

Loubna Benhabib Zakia Hadjou, BelaidAbdellah Benyoucef Theoretical study and Modeling of a Parabolic trough Solar Concentrator, Algerian Journal of Materiels Chemistry, Vol 4, , 2021, pp. 7-14.

A. Ferrière et G. Flamant. ‘Captation, Transformation et Conversion de l’Energie Solaire par Les Technologies à Concentration’. IMP-CNRS, Centre du Four Solaire, France, 2004.

http://www.infoclimat.fr / 10/20/2021.

M. Capderou, Theoretical and experimental models, Solar atlas of Algeria (in French), Tome 2. Vol 1. Algeria: University Publications Office; 1987.

F. Kasten, The Linke Turbidity Factor Based on Improved Values of the Integral Rayleigh Optical Thickness, Solar Energy. Vol 56, N°3, 1996, pp. 239-244.

M. Capderou, ‘Atlas Solaire de l’Algérie. Modèles Théoriques et Expérimentaux’, Vol. 1, T1, Office des Publications Universitaires, EPAU, Algérie, 375 p., 1987.

J.A. Duffie and W.A. Beckman, 'Solar Engineering of Thermal Processes', John Wiley & Sons, New York, 1991.

S. Quoilin, Concentrator solar power plants (in French), faculty of applied Sciences". University of Liége; 2007.

A. Kalogirou Soteris, Solar thermal collectors and applications, Prog Energy Combust Sci, Vol 30, 2004, pp. 231–95.

J.A. Duffie , W.A. Beckman, Solar Engineering of Thermal Processes. 2nd Edition, Madison, New York; John Wiley & Sons, Hoboken, 2013.

O. Garcia-Valladares, N. Velazquez, Numerical simulation of parabolic trough collector: improvement using counter flow concentric circular heat exchangers. Int J Heat Mass Transf, Vol 52, No (3–4), 2009, pp. 597–609.

Belkacem Agagna, Arezki Smaili, An improved model for predicting the performance of parabolic trough solar collectors. August 2018.

A. Ratzel, C. Hickox, D. Gartling, Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries. Journal of Heat Transfer, Vol 101, 1979, pp. 108-113.

V. Gnielinski, On heat transfer in tubes. Int J Heat Mass Transf, Vol 63, 2013, pp. 134–40.




DOI: http://dx.doi.org/10.47238/ijeca.v6i1.151

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 International Journal of Energetica

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
The content of this journal is licenced under a Creative Commons Attribution-NonCommercial 4.0 International License