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Abstract – This paper reviews the most significant aerodynamic, structural, and material 

advances in wind turbine blades. If the market is to be more sustainable, wind turbine efficiency 

becomes an important consideration. The article highlights the aerodynamic innovations that 

refine blades to optimize performance and capture more energy in higher lift-to-drag ratios. The 

structural advancement is based on high-end design techniques for high performance in extreme 

conditions to eliminate maintenance costs. Then there are the material improvements, such as 

lightweight, robust composites that make for longer blades with the ability to capture more energy 

without compromising strength. This multidimensional approach is, overall, crucial to widespread 

utilization of wind as a sustainable and affordable energy source against the backdrop of 

increasing energy needs. 
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I. Introduction 

The innovations in the blade technology for 

optimizing wind turbine efficiency became all the more 

important given rising demand for green power 

worldwide. Wind is an important renewable source of 

energy, and aerodynamic tuning of the blades of wind 

turbines can help optimize energy capture and storage. 

This review outlines the many aerodynamic, structural, 

and material technologies used to enhance the efficiency 

of wind turbine blades.  

Aerodynamic improvements look to optimize the 

blade’s form and efficiency so as not to lose wind energy. 

These innovations are fundamental to optimizing the lift-

to-drag ratio, which directly affects the overall efficiency 

of wind turbines. Additionally, the structural 

improvement involves adopting advanced design and 

analysis techniques to make turbine blades more resilient 

and functionally reliable so they can withstand severe 

environmental environments with low-cost maintenance  

 

 

 

[1]. Along with aerodynamic and structural innovations, 

materials science makes a significant contribution to the 

efficiency of the blades of wind turbines. The advent of 

lighter, more resilient alloys means longer blades that can 

take on more energy while maintaining strength. Such 

material improvements are critical to increasing the  

deployment of wind as a stable and cost-effective source 

of energy when demand for energy continues to increase 

[2].  

 

II.  Blade Design of Wind Turbines 

 

The design of the blade is one of the most important 

elements in wind turbine performance and efficiency. 

Properly constructed blades can capture as much energy 

as possible from wind and maintain structural integrity 

against various operational stresses.  
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II.1. Importance of Blade Design 

Aerodynamic performance, efficiency, and longevity 

are all influenced by the shape of wind turbine blades. 

There’s a good degree of energy to be harnessed by 

blades that have proper shape, length, and materials. 

II.2. Key Factors in Blade Design 

The wind turbine blades are influenced by several 

variables:  

 Aerodynamics: A blade design must offer the 

greatest lift and lowest drag. That’s the key to 

harvesting the most energy from the wind.  

 Material Selection: Materials must be selected based 

on strength-to-weight and fatigue characteristics. 

Composites are usually utilized as they have good 

performance properties [3]. 

 Length & Width: Blade length determines how much 

wind power can be harvested. But long blades come 

with risks in terms of both stress and weight, so 

advanced structural design is needed to lower the 

risk. 

 Twist and Pitch: Blades can be designed with a twist 

or pitch that optimizes performance across a range of 

wind speeds. This flexibility maintains efficiency in 

uncertain environments [4]. 

II.3. Advances in Blade Design 

The latest efforts have been on:  

 Variable Geometry: There are some modern designs 

that allow blades to adjust pitch or shape to match 

wind direction, increasing efficiency and safety.  

 Computational Modeling: Powerful computer 

software tools are available that allow engineers to 

calculate aerodynamic performance at different 

operating conditions. Computational Fluid Dynamics 

(CFD) simulations are typically used to calculate 

flow at the blades [5].  

 Blades Engineered for Decommissioning: There is 

now a growing focus on creating blades that can be 

easily broken down and recycled at the end of their 

useful lives in a sustainable manner for the wind 

energy industry [6].  

 

II.4. Challenges in Blade Design 

The major problems that arise during blade design are:  

 Fatigue Load Management: Blades of wind turbines 

receive cyclic loadings, which can result in fatigue 

failure over time. The prevention and mitigation of 

these failure modes are critical to longevity [7]. 

 Environmental Impact: The manufacturing and 

disposal of turbine blades imposes the risk of 

environmental pollution. Designers are now 

exploring eco-friendly materials and processes [6] 

 

The blade design plays an important role in ensuring 

wind turbines operate and maintain optimal performance. 

New technologies and research continue to assist in 

improving blade efficiency, as well as reducing fatigue 

and environmental impacts. Maintaining attention to 

these areas will be the key as demand for renewable 

energy rises. 

 

III. Aerodynamic Advancements in Wind 

Turbine Blade Design 

Following is a breakdown of several major blade 

innovations, such as optimizing airfoil shape, modifying 

blade tip, leading-edge tubercles, and the influence of 

blade length and swept area.  

III.1. Airfoil Shape Optimization 

The shape of the airfoil is an essential factor for high 

aerodynamics in blades. Several techniques, especially 

neural network-based approaches, have been tried to 

predict airfoil behavior. It is common to use the Class 

Shape Transformation approach, which allows 

Chebyshev polynomials to be used to parameterize the 

surface geometry of the airfoil to perform design sprints. 

The optimizations often target reducing drag as much as 

possible with respect to different operational conditions, 

thereby greatly increasing the energetic performance of 

wind turbine blades [8]. Moreover, with the right 

computational techniques, like reduced-order models 

(ROMs), we can predict the aerodynamic performance of 

shapes effectively. The combination of two-dimensional 

and three-dimensional CFD models allows a wide 

analysis and optimal shapes to effectively perform under 

realistic flow conditions [9]. 

 

III.2. Blade Tip Modifications for Improved Efficiency 

 

Altering the blade tip geometry is a very efficient way 

to mitigate vortex shedding and thus drag. Tip 

optimization usually entails blade tips with winglets or 

other aerodynamic modifications to eliminate the vortices 

in the blade tips. All these upgrades result in better lift-

to-drag ratios, which boost the overall performance of the 

rotor system. The addition of vortex generators (VGs) 

could be used to actively control flow separation, 

increasing the productivity of adapted blade tips [10]. 
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III.3. Leading-edge Tubercles and Passive Flow 

Control 

Leading-edge tubercles are a novel design feature that 

optimizes blade aerodynamics for different operating 

conditions. These wavelike fins on the leading edge of 

the airfoil prevent stalls by facilitating better airflow 

attachment at low speeds and with high angles of attack. 

This effect is useful, especially for the blades of wind 

turbines, where one can maintain energy capture during 

turbulent wind flow. Passive flow control techniques 

using leading-edge tubercles have been shown to 

dramatically improve the wind energy conversion 

performance and reduce operating noise [11]. 

 

III.4. Impact of Blade Length and Swept Area on 

Energy Capture 

The length of blades and the area swept are important 

to wind turbines’ energy capture performance. The 

longer the blades, the more wind is caught and the more 

swept area one receives, and therefore the more energy is 

created. But longer blades also can pose structural 

problems and costs in terms of material, so length and 

structural integrity should be balanced. Research and 

modeling have revealed that long blades are critical for 

high performance and low wind shear and turbulence to 

minimize their harm [10]. 

These aerodynamic blade designs, in short, 

demonstrate the continuing development of technologies 

for higher efficiency and effectiveness of energy capture. 

Design efficiency techniques, innovations in structure, 

and principles of aerodynamics are the core of blade 

technology for many future sectors of renewable energy 

production. 

 

IV. Structural Innovations in Wind 

Turbine Blades 

Enhanced strength, fatigue resistance, and performance 

of wind turbine blades depend on structural 

enhancements. New research has emphasized many 

aspects of these developments, such as optimization via 

finite element analysis (FEA) or the influence of blade 

flexibility. 

 

IV.1. Load-bearing Capacity and Fatigue Resistance 

 

The wind turbine blades are also subject to immense 

force while in use that can cause them to wear and break 

if they aren’t managed well. The blades must remain 

structurally sound because larger blades and their 

capacities increase the bending moments, which should 

transfer to the hub [12]. Evidence has also shown that 

using materials such as glass fiber reinforced polymer 

(GFRP) composites increases the fatigue life and load-

bearing ability of wind turbine blades [13]. The materials 

are specially engineered to absorb the massive bending 

effects of the environment (windstorms and heavy 

rainfall). 

 

IV.2. Use of FEA for Structural Optimization 

 

FEA is a key design and optimization tool for wind 

turbine blades. It makes it possible to model real-world 

loads and simulate blade behavior under a variety of 

conditions. Engineers can use FEA to detect the highest 

stress points on the blade surface and accordingly 

distribute material at the best possible rates for better 

performance [14]. For example, FEA has been used to 

model the structural behavior of blades under various 

loads, and the results are improved design for safety and 

cost effectiveness. 

 

IV.3. Blade Flexibility and Impact on Performance 

and Durability 

It is the correct ratio of rigidity and flex in wind 

turbine blades that makes the blade work best. Increased 

flexibility also results in greater energy recovery as 

blades respond to the dynamic conditions of the wind 

[15]. Yet too much flexibility risks structural failure in 

extreme situations. This combination of extensibility and 

stiffness needs to be carefully adapted to deliver as much 

performance as possible. Blades’ flexibility in response 

to the forces of wind means they can continue to function 

efficiently without the danger of becoming fatigue prone 

as time goes on. 

In short, more improved load-bearing capacity, fatigue 

resistance, and structural design using techniques like 

FEA is needed to build better, more efficient wind 

turbine blades. Additionally, controlling blade flexes is 

important for blade performance and field life. 

 

V. Material Advancements in Blade 

Manufacturing 

Material innovations for blades have received 

significant focus in the area of application needs for 

enhanced performance and efficiency, particularly in the 

aerospace and renewable energy sectors. In this section, 

we review the key advances in lightweight composites, 

the use of carbon fiber and thermoplastics, and how to 

mitigate degradation and maintain high performance over 

time. 
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V.1. Lightweight Composite Materials for Enhanced 

Strength-to-Weight Ratio 

In blade construction, lightweight composite materials 

became the must-have for superior strength-to-weight 

ratios. The aerospace and energy markets are chasing 

these materials in the interest of performance and fuel 

economy. Composites provide the possibility to retain 

structure at the cost of weight minimization, especially 

important in space applications where every gram of 

weight matters [16]. 

Such composites typically combine several materials 

(fibers, resins, etc.) to have certain mechanical 

characteristics. This is one of the biggest advantages of 

light-weight composites for blade fabrication: 

 High Performance: They possess a higher 

mechanical strength than standard materials, and 

blades perform better at high temperatures.  

 Corrosion Resistance: Most lightweight composites 

are highly resistant to corrosion, giving parts a 

longer lifespan.  

 Design Flexibility: Composites are produced in a 

manner that allows complex geometric designs with 

enhanced aerodynamics and cost-efficiency [17]. 

V.2. Carbon Fiber and Thermoplastic for Blade 

Manufacturing Process 

Due to their properties, carbon fiber and thermoplastic 

composites are also becoming more common in blade 

manufacturing. Carbon fiber reinforced polymers 

(CFRPs) have been developed with great strength and 

rigidity, but they are lightweight [18]. The use of these 

materials in blade construction benefits many different 

ways: 

 Superior Durability: CFRPs are highly fatigue 

resistant, so they’re perfect for high cycle uses in 

wind turbine blades and aircraft [19]. 

 Thermoplastic Uses: When thermoplastics can be 

used in conjunction with carbon fibers, they can 

create lighter, tougher blades. They are less costly, 

and they can be reworked and recycled or reused, 

which is another great green design benefit. 

 Value for Money: Carbon fiber may be costly at the 

beginning, but its long-term resiliency and lower 

costs of upkeep are often worth it for high-

performance use [20]. 

 

V.3. Material Degradation and Long-term 

Performance 

Material loss is a major issue in blade manufacturing, 

particularly when working in high ambient temperature 

environments, such as wind turbines and jet engines. Key 

recommendations to prevent degradation and increase the 

performance over the long term are: 

 Stable Coatings: Using durable protective coatings 

can protect blades against elements such as UV rays, 

moisture, and corrosion. This can make the blades 

more durable [21]. 

 Regular Maintenance and Inspection: Establishing 

regular maintenance schedules and using inspection 

technologies such as non-destructive testing helps 

identify potential fatigue or material breakdown so 

that blades continue to operate effectively 

throughout the duration that was planned [22]. 

 Material Research and Development: Continuous 

R&D aims to discover new materials and composites 

that are resistant to degradation. Such includes 

studying nanotechnology and biomimetic structures 

that mimic nature’s remedies for improved material 

endurance [23]. 

These materials and engineering improvements 

enhance the performance of blades as well as other 

industry-wide sustainability and eco-friendly efforts. 

Using these improvements, producers can ensure that 

their blades remain agile and resilient against changing 

market needs. 

 

VI. Latest Aerodynamic, Structural and 

Material Innovations for Wind 

Turbine Blade Design: Industry 

Contributions 

Design innovations have improved efficiency and 

performance in wind turbine blades, a huge part of which 

has come from the design of the blades. These are six 

such past cases sorted by aerodynamic, structural and 

material improvements and listed companies responsible 

for the innovations. 

VI.1. Aerodynamic Improvements 

 Gamesa: It’s one of the first to use a customized 

airfoil shape for their wind turbine blades, which has 

made it far more efficient to capture energy. They 

are designed to decrease drag and maximize 

performance with variable wind conditions, making 

wind power an increasingly attractive fuel [24]. 

 Vestas Wind Systems: Vestas has invented variable-

pitch turbine blades, maximizing wind-extracted 

energy. They can adjust the angle of the blades 

according to the actual wind strength, ensuring 

optimal performance and higher production of 

overall energy [1]. 
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VI.2. Structural Developments 

 GE Renewable Energy: The blades on the Haliade-X 

offshore wind turbine are the longest and most 

complex in the world, using structural concepts such 

as segmented blades. This makes it much easier to 

transport and install bigger blades that capture and 

save more energy [25]. 

 LM Wind Power: A maker of bend-twist-coupled 

blades, LM Wind Power is known for designs that 

twist while bending, so the mechanical stress will be 

removed, and blades can be longer and lighter. This 

shape strengthens the blades in strength and 

efficiency to harvest wind energy [26]. 

 

VI.3. Material Innovations 

 TPI Composites, Inc.: This company has pioneered 

the use of cutting-edge composites to develop robust 

and lightweight wind turbine blades. These designs 

work by improving the strength-to-weight ratio, 

which allows for longer blades that deliver more 

wind energy without adding too much weight to the 

entire turbine [27]. 

 Arkema: Arkema has been committed to 

manufacturing recyclable blades for wind turbines 

and putting sustainability into the design. This move 

is to improve the life of blades and still ensure a low 

impact performance, in line with the industry's 

commitments to sustainable energy [28]. 

These examples illustrate how companies have 

applied aerodynamic, structural and material technology 

to optimize wind turbine blade design, making wind 

energy systems more efficient and cost-effective. 

 

VII. Literature Review of Aerodynamic, 

Structural and Material Innovations in 

Wind Turbine Blade Design 

 

The number of papers retrieved from publications 

(2019-2024) on aerodynamic, structural and material 

advances in wind turbine blade design is summarized in 

Figure 1. 

 
Figure 1. Articles reviewed (2019-2024) for aerodynamic, structural 

and material advancements in wind turbine blade design 

VII.1. Aerodynamic Characteristics Underlying 

Contemporary Wind Turbine Blade Efficiency 

Table 1 presents the quantitative distribution of the 

number of reviewed papers on aerodynamic 

advancements in wind turbine blade design and their 

publishers. 

 

Table 1. Number of articles from different publishers reviewed for 

aerodynamic advancements in wind turbine blade design. 

Publisher 

Number of Articles 

Reviewed 

EAWE 2 

IOP Publishing 2 

Karagandy University 2 

MDPI 2 

Sage Journals 2 

Wiley 2 

DergiPark Akademik 1 

Elsevier 1 

Extrica 1 

Heliyon 1 

IEEE 1 

IntechOpen  1 

Semarak Ilmu Publishing 1 

Springer 1 

UTP Press 1 

Total 21 

 

In the study by Madsen et al. (2019), an aerodynamic 

shape optimization of a 10 MW wind turbine was done 

using a high-fidelity CFD approach, targeting blade 

planform, cross-sectional shapes, and airfoil profiles. The 

optimization strategies were a 3D adjoint style approach, 

which allowed for a tremendous performance 

improvement due to the lower relative thickness and new 

airfoil design that increased turbine performance by 1.44-

fold [29]. By contrast, Li et al. (2020) examined the 

aerodynamic and aeroelastic behavior of bendable wind 

turbine blades during regular erratic flows, including 

wind shear, tower shadow, and yawed flows. Their work 

stressed the need to model these nonlinearities to 

anticipate performance fluctuations and improve turbine 

stability and efficiency [30]. Tanasheva et al. (2020) 

experimented with revolving cylinders, studying the 

Magnus effect to enhance lift force and efficiency of 

turbines, especially at lower wind speeds. They found the 

best possible cylinder spacing for best aerodynamic 

efficiency, which indicates its suitability for smaller wind 

turbines for small-scale power generation [31].  

Wu et al. (2021) examined the effects of VGs on the 

turbulence zone between the blades of wind turbines in 
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an effort to suppress flow separation to increase 

aerodynamics. They found that VGs also helped reduce 

flow separation and therefore enhance lift, drag, and 

efficiency, which is extremely important for optimizing 

energy capture [32]. By contrast, Barlas et al. (2021) 

were focused on aeroelastic design optimization of tip 

extensions on a 10 MW wind turbine, using surrogate 

models to achieve increased performance without 

increasing the loads. They found an 8% increase in their 

energy generation per year, demonstrating the ability of 

optimized tip extensions to reduce aerodynamic stresses 

during turbulence [33]. Zhang et al. (2021) conducted 

aerodynamic topology optimization of blade tip 

geometries, introducing convex-concave-convex 

geometry that decreased separation of flow and loss of 

pressure at the blade tips. This new tip design increased 

aerodynamic performance through the reduction of drag 

and greater airflow at the blade’s surface [34].  

Chavan et al. (2022) looked at aerodynamic 

performance using leading-edge tubercles modeled on 

humpback whale flippers. They showed that tubercles 

helped with lift-to-drag ratios, to as much as 8.5 

(compared with 1.7 for standard blades), especially at 

low wind speeds [35]. McKegney et al. (2022) also 

looked at leading edge tubercles, doing wind tunnel 

testing on a NACA-0021 aircraft. They concluded that 

tubercles had 115% higher post-stall lift and significantly 

lower induced drag, suggesting major improvements 

under different wind loads [36]. In comparison, 

Jayanarasimhan and Subramani-Mahalakshmi (2022) 

opted for flow control devices, in particular VGs, that 

enhanced aerodynamic efficiency by postponing stalls 

and maximizing lift. They stressed that the placement 

and configuration of VGs would be highly beneficial to 

maximize the production of power [37]. 

Horcas et al. (2022) focused on curved tips with 

various aerodynamic simulations for horizontal axis wind 

turbine blades. Whereas simpler algorithms like the blade 

element momentum (BEM) could not accommodate the 

complexity caused by tip curvature, more sophisticated 

algorithms like the blade-resolved Navier-Stokes solver 

could model unsteady dynamics, particularly when under 

deep stall [38]. By contrast, Abbas et al. (2023) focused 

on trailing edge flaps, adding aero-servo-elastic designs 

to accommodate large blades. They reported a 21% 

reduction in blade tip deflection and a 1.3% reduction in 

levelized cost of energy (LCOE), further proof-of-

concept of the economical and performance benefits of 

flap-based controls [39]. Xu et al. (2023) optimized the 

aerodynamic efficiency of wind turbine blades using the 

new CSA-KJ4412 airfoil. Their research had significant 

results in lift-to-drag ratio and pressure distribution, 

optimizing power output through adhesive flow and anti-

stall over a wide range of angles [40].  

Abdalkarem et al. (2023) compared trailing edge 

wedge tails (WTs) to fish wedge tails (FWTs) on the 

NACA 0021 airfoil and found FWTs provided superior 

lift/glide ratios compared with traditional Gurney flaps. 

The authors did CFD simulations and achieved 

maximum efficiency with 2.5% tail height and 1% airfoil 

length, which enhanced aerodynamic efficiency by more 

than 31% [41]. Tokul and Kurt (2023) compared the 

NACA 2414 and the NACA 6409 airfoils for small 

horizontal axis wind turbines (HAWTs) and concluded 

that the NACA 6409 achieved higher lift-to-drag and 

distribution of pressure ratios at a Reynolds number of 

1x10
6
 [42], which makes the aircraft more efficient. 

Ahmadi et al. (2023) studied the installation of winglets 

on NACA 0012 airfoil blades and determined that this 

change at 15° of attack minimized drag and increased 

torque, resulting in better performance [43].  

Erwin et al. (2024) looked at the effect of turbulators 

on the NACA S1046 airfoil and, by CFD simulations, 

demonstrated how turbulators delayed flow separation, 

enhancing lift-to-drag ratios in low angles of attack. They 

concluded that turbulators at 40–50% chord length 

provided the best lift, which means improved efficiency 

in vertical wind turbines [44]. Koca and Genç (2024) 

examined the effect of partial flexibility on a cambered 

airfoil and found that a flexible membrane on the suction 

side prevented bubbles of laminar separation and 

aerodynamic noise. Increasing the flow profile in the 

post-stall region also resulted in improved aerodynamic 

performance and decreased structural vibrations that are 

important for a long-life turbine [45]. Schaffarczyk et al. 

(2024) created a 60% thick airfoil that eschewed 

computations and experiments to demonstrate dramatic 

performance gains in the root area of wind turbine 

blades. They also applied aerodynamic devices like VGs 

and gurney flaps that increased lift and decreased drag in 

thicker airfoils, filling a technological need in blade 

design [46].  

The paper by Solombrino et al. (2024), focused on the 

structure and aerodynamics of flatback airfoils and 

swallowtail add-ons. They found flatback airfoils had 

better structural integrity but added a drag penalty. 

Swallowtail design reduced this drag with aerodynamic 

efficiency and derived structural benefits [47]. 

Dyusembaeva et al. (2024) tested combinatorial blades 

with a spinning cylinder and fixed blade arrangement. 

Mathematical calculations showed a 0-degree angle as 

the most aerodynamic, with the highest lift coefficient at 

10 and the lowest drag coefficient at 4.5; the best energy 

yield [48]. Akheel et al. (2024) studied camber and 
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thickness adjustments to small wind turbines’ airfoil. 

They changed this to add 6.7% power and 20.47% more 

energy per year, thanks to a higher lift-to-drag ratio [49]. 

 

VII.2. The Impact of FEA on Structural Optimization 

and Efficiency in Wind Turbine Blade Design 

 

The quantitative distribution of the number of 

reviewed articles cited on the structural advances in wind 

turbine blade design and their publishers can be found in 

Table 2. 

Table 2. Number of articles from different publishers reviewed for 

structural advancements in wind turbine blade design. 

Publisher 

Number of Articles 

Reviewed 

MDPI 5 

EAWE 2 

IEEE 2 

Springer 2 

ARC 1 

ASME 1 

Elsevier 1 

Emerald 1 

IJSREM 1 

IOP Publishing 1 

JAZ 1 

PTMTS 1 

Sage Journals 1 

Turin Polytechnic University 

in Tashkent 1 

Total 21 

 

Anderson et al. (2019) tuned a 13-meter blade on a 

wind turbine through the application of high-resolution 

multidisciplinary modeling, cutting off-axis matrix stress 

by 18–60% but increasing blade deflection. This 

emphasized the balance between stress reduction and 

stiffness to enhance the efficiency of the turbine [50]. 

Muyan and Coker (2020) studied the bending behavior of 

a 5-meter composite blade flap-wise, edgewise, and 

under combined loads. They found critical failure points 

and observed that combined loads caused less damage 

than flap-wise loading, improving the buckling strength 

of the blade [51]. Iori (2020) optimized a DTU 10MW 

blade configuration with non-linear transient loads using 

the Nested Analysis and Design (NAND) vs. 

Simultaneous Analysis and Design (SAND) approaches. 

Both designs came up with 1.89x lighter designs than the 

original, and SAND provides better computational 

performance [52].  

Rustamov (2021) used FEA to improve the design of a 

9-meter-long composite blade, mainly by manipulating 

the properties and shapes of the materials. The study 

showed that weight savings without structural collapse 

were achieved by employing a carbon/glass hybrid 

material, delivering increased strength and efficiency of 

energy harvesting [53]. Özkan and Genç (2021) also 

applied FEA in combination with the NSGA-II algorithm 

and fluid structure interaction (FSI) models to perform 

multi-objective optimization of micro-wind turbine 

blades. They concentrated on mass reduction, and their 

research showed weight loss of up to 14.3% at the 

expense of increased manufacturing expenses [54]. Tian 

et al. (2021) used FEA and a genetic algorithm to 

optimize the structural strength and durability of a blade 

for a wind turbine. Their work focused on weight 

reduction and pushed up the natural frequency of the 

blade, so it didn’t resonate, leading to a 15% weight 

reduction [55].  

Song et al. (2022) optimized internal structure of 

large-scale offshore blades to reduce weight by 9.88% 

while complying with all structural specifications. The 

team used aerodynamic simulations and a variable 

density topology optimization strategy to improve the 

bending resistance and aerodynamic performance [56]. 

Dellaroza et al. (2022) used a surrogate-based 

optimization algorithm to optimize the stacking sequence 

of laminated composites and improve power coefficients 

by adding stiffness to the blade. They showed that bend-

twist coupling influence accounted for the crucial role of 

bend-twist coupling in passive pitch angle regulation, 

and material layup orientation had important implications 

for turbine efficiency [57]. Camarena et al. (2022), 

streamlined land-based wind turbine blades focused on 

transportability and durability. It also showed that novel 

constructions such as downwind configurations and 

heavy-tow carbon fiber would allow the carrying of 

larger blades at massive mass savings [58].  

Raičević et al. (2022) were mostly focused on how 

wind velocity effects stress and deformation of 

composite blades using FEA to pinpoint critical stress 

points and provide design recommendations to optimize 

structural integrity and reduce manufacturing cost. This 

analysis provided essential clues as to how shear and 

normal stresses caused the deformations, which were 

critical to ensuring blades could be maintained in 

operation [59]. By contrast, Batay et al. (2023) addressed 

a joint optimization scheme of CFD and FEA to optimize 

aero-structural design. They demonstrated both enhanced 

power generation potential (6.78%) and reduced weight 

of the blades (42.22%) in order to reduce manufacturing 

costs and preserve structure integrity [60]. Ghoneam et 
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al. (2023) investigated the dynamic life and fatigue life of 

vertical-axis wind turbine (VAWT) composite blades 

using dynamic analysis using FEA. They discovered that 

optimized blade design sustained the least amount of 

damage with dynamic loading; hence, composite 

materials play a vital role in optimizing blade 

performance [61].  

Yamina et al. (2023) focused on a 61.5-meter blade 

that was designed to operate at high wind speeds. Using 

COMSOL Multiphysics for fine-grained simulation and 

FEA, stress distribution was assessed, and critical Von 

Mises stresses were determined to be predictive of 

structural integrity under gravitational and centrifugal 

loads [62]. Instead, Chandana and Radha (2023) 

employed experimental procedures for evaluation of 

rotor blades from glass fiber epoxy coated with natural 

fibers. By performing mechanical testing and simulations 

with the help of SOLID WORKS and ANSYS FLUENT, 

they had shown that the composite material had a 

significant increase in mechanical and aerodynamic 

properties, providing performance far beyond 

conventional materials [63]. Zhang et al. (2023) used a 

novel airfoil optimization approach based on a Kriging 

surrogate model and CFD to enhance the aerodynamic 

and structural efficiency of offshore wind turbines. They 

found reduced torsion angles and higher lift-to-drag 

ratios for the optimization of airfoils integrated into the 

blade [64].  

Kim and Cho (2024) looked at using graphene 

platelets (GPLs) as nanofillers for wind turbine blades in 

order to improve the mechanical properties and lower the 

cost. Their finite element calculations showed that GPL-

reinforced blades were more robust and lighter than 

traditional fiberglass blades, providing higher energy 

conversion efficiency and less construction cost for 

support girders [65]. By contrast, Nezzar et al. (2024) 

involved the structure optimization of a glass/epoxy 

composite blade for miniaturized VAWTs. They created 

an optimal structure for the ply thickness and orientation 

modeling, which saved 59% weight over an aluminum 

blade and met safety requirements, demonstrating the 

possibilities of composites for better performance and 

rigidity [66]. Batay et al. (2024) adopted a much more 

comprehensive approach, combining aerodynamic shape 

optimization with FEA to reduce drag and structural 

mass in wind turbine blades and other aerodynamic 

devices. They employed coupled solvers using a one-way 

coupling scheme to study how to optimize aerodynamic 

and structural models at the same time, increasing 

efficiency [67]. 

In their second paper, Kim and Cho (2024) 

demonstrated that FEA could be used to design and build 

graphene platelet-reinforced composite (GPLRC) wind 

turbine blades to improve structural strength and save 

weight. The results showed that gratings armed with 

GPLs produced better performance, measured by less 

deflection and stress, than conventional fibers such as 

glass fiber and carbon nanotubes (CNTs), showing 

significant improvement in strength and energy recovery 

[68]. On the other hand, Ivanyna et al. (2024) focused on 

stress analysis and eigenfrequency measurement of 

composite blades made of glass-reinforced vinyl ester 

and PVC foam. They showed how the dynamic behavior 

of the blade under multiple operating scenarios was 

crucial for determining structural integrity, leading to an 

overall description of stress distribution and vibrational 

characteristics that could affect operational reliability 

[69]. Prakesh et al. (2024) simulated and optimized in 

CATIA and ANSYS, addressing the design and material 

selection for the blade profile to increase efficiency and 

minimize cost. Their optimization process brought out 

the most optimal combination of design features and 

materials, ultimately resulting in more rugged and cost-

effective wind turbine blades [70]. 

VII.3. Material Innovations Evolving Efficiency and 

Lower Costs for Wind Turbine Blades 

Table 3 provides a quantitative breakdown of the total 

number of reviewed articles related to the material 

advances in wind turbine blade design and publishers. 

 

Table 3. Number of articles from different publishers reviewed for 

material advancements in wind turbine blade design. 

Publisher 

Number of Articles 

Reviewed 

MDPI 6 

Elsevier 4 

Taylor $ Francis 2 

Wiley 2 

AIChE 1 

AIP Publishing 1 

ASME 1 

IEEE 1 

Osti.gov 1 

Sage Journals 1 

YRPI 1 

Total 21 

 

Panduranga, Alamoudi, and Ferrah (2019) studied 

high-performance composites that were coated with 

electro-spun polymer nanofibers and experienced 150% 

improvement in fracture toughness and 33% 

improvement in delamination resistance. These 
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improvements were made without sacrificing other 

mechanical characteristics of the blades, which allowed 

them to be used in larger turbines and to be more long-

lasting [71]. Rather, Cognet et al. (2020) developed a 

universal scaling algorithm to select the right soft 

materials for flexible blades, with a 35% increase in 

harvested power compared to traditional rigid blades. 

The result was a weight reduction of 5% to 20% that in 

turn increased efficiency and saved material costs [72]. 

Sellitto et al. (2020) was dedicated to OneShot Blade® 

technology, which eliminated the adhesive requirement 

in fiberglass blade manufacturing. The invention meant 

less labor time and expense while also making the blades 

better structurally and tolerably damaged [73].  

Kasagepongsan and Suchat (2021) investigated epoxy 

resin nanocomposites reinforced with modified 

epoxidized natural rubber fibers and glass fibers, which 

were also more mechanically robust and weather 

resistant during accelerated aging tests. Their findings of 

a 35% increase in tensile strength following UVB 

exposure at 168 hours and the field application confirmed 

with a tree wind turbine of 5 kW to demonstrate the 

potential of their engineered composites to operate in the 

wild [74]. Conversely, Andoh et al. (2021) created a 

composite of bamboo fiber and recycled HDPE to 

address the double problem of increased material costs 

and environmental responsibility. They discovered that 

composites comprising 25% bamboo fiber had better 

tensile and impact strength, supporting the performance 

advantages of using natural fibers in wind turbine 

composites [75]. Johansen et al. (2021) explored 

nanofabricated graphene-coated materials that 

dramatically improved the anti-erosion properties of 

wind turbine blades. Their paper also showed that 

graphene-coated coatings had 13-fold longer lifetimes 

compared to the non-coated coatings, which decreased 

maintenance costs and increased blade life [76]. 

Samuel et al. (2022) focused on improving a natural 

fiber hybrid reinforced composite (PxGyEz) with 

pineapple leaf fiber and synthetic fibers. This study was 

able to provide significant gains in tensile strength (95.31 

MPa) and flexural strength (92.82 MPa) with a 

significant weight saving of 64% on a simulated 5 MW 

wind turbine blade, showing eco-friendly materials are 

viable candidates for clean wind energy [77]. Rather, the 

research by Liu et al. (2022) evaluated polyethylene 

terephthalate (PET) foam for the replacement of older 

types of foams, such as polyvinyl chloride (PVC) and 

styrene-acrylonitrile (SAN), in blades for wind turbines. 

Their results found that PET foam was mechanically 

more effective, more thermally stable, and more cost-

effective, as well as 100% recyclable, further 

underscoring its utility as a renewable substitute [78]. In 

the work of Saadeh et al. (2022), they tested self-healing 

features in glass fiber-reinforced epoxy nanocomposites 

for the blades of wind turbines. In it, we have shown that 

incorporation of CNTs made them much stronger, 

increased their strength up to 10 times, and showed 

extremely fast stress recovery in the healed material, 

which points towards the use of self-healing devices to 

make wind energy more maintenance-efficient and long-

lasting [79].  

Ganesh et al. (2022) examined the mechanical 

qualities of carbon fiber, fiberglass, aluminum, wood, 

and more. It used ANSYS computation modeling to 

simulate under various conditions and found carbon 

fibers were better for larger blades due to strength and 

fatigue resistance and fiberglass composites for smaller 

blades [6]. In contrast, Mdallal et al. (2023) stressed the 

sustainability of using sustainable products like 

reinforced plastics and bamboo composites. These 

studies emphasized sustainability and highlighted 

corrosion-proof coatings as a key factor in increasing 

turbine efficiency while overcoming such issues as 

quality inspection and testing for durability [80]. Ennis et 

al. (2023) focused on the economic benefits of pultruded 

composites, highlighting mechanical efficiency and 

lower prices due to pultrusion production. This 

experiment demonstrated a 17% improvement in design 

strength over conventional technology, establishing the 

feasibility of light, powerful turbine blades [81].  

Cardoso et al. (2023) explored jute fiber reinforced 

epoxy composites as a sustainable substitute for synthetic 

fibers and reported that their mechanical properties could 

be utilized in low-wind-speed applications. They used 

Classical Laminate Theory and Extended Bredt-Batho 

Shear Flow Theory to test the strength of the composites, 

with good results including torsional stiffness of 1873.6 

N m² and flexural rigidity of 1.45 × 10⁶  N m² [82]. 

Conversely, Carron et al. (2023) focused on large-scale 

additive manufacturing, specifically polymer-based 

material extrusion, which worked well for wind turbine 

hulks. As they saw, the efficiency of core materials 

would directly drive down manufacturing costs without 

sacrificing performance and enable cost-efficient 

manufacturing [83]. Mishnaevsky et al. (2023) had 

designed a bio-inspired structure with bio-inspired 

adhesives to provide wind turbine blades with higher 

strength and recycling. Their new adhesive design solved 

interface degeneration problems seen in traditional blades 

with a dual-mechanism design that integrated mechanical 

interlocking and chemical attachment. This study, in 

addition to ensuring better adhesive joint strength, 

enabled possible blade parts to be isolated for reuse and 
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thus was sustainable [84].  

This study, published by Muhammed et al. (2024), 

evaluated E-glass fiber infused with SiO2-Al2O3-TiO2 

montmorillonite in AW 106 epoxy for tensile strength, 

hardness, and fatigue resistance of blades of wind 

turbines. The mechanical performance of this 

nanocomposite exhibited excellent quality; Al2O3 at 1% 

concentration was optimal in performance, potentially 

enabling a more robust blade [85]. Thakur and Kumar 

(2024) reported on new bio-derived resins and 

composites for reusable wind turbine blades by focusing 

on additive manufacturing to improve the recyclability 

and minimize environmental impact. But structural 

integrity and scalability problems emerged [86]. In the 

meantime, Pender et al. (2024) tested natural fibers such 

as flax and hemp, showing that they minimized the 

environmental impact of wind turbines by reducing 

Global Warming Potential (GWP) and stiffening them. 

Furthermore, recycling practices such as cement kiln co-

processing were considered good at lifecycle 

environmental reduction [87].  

In the article by Quesada-Bedoya et al. (2024), the 

researchers looked at bioinspired manufacturing options, 

particularly roto-molding along with polyurethane 

casting. They aimed to solve environmental problems 

and manufacturing challenges and found that this 

approach markedly improved energy capture and inertia, 

improving the overall performance and profitability of 

blades for small wind turbines [88]. Kim and Cho (2024), 

on the other hand, investigated the integration of GPLs 

into the blades of wind turbines and found a major 

improvement in mechanical parameters (static bending, 

free vibration, and torsion). It turned out that blades 

coated with GPLs were more robust and lighter than 

standard fiberglass components, leading to a lower cost 

of construction and better energy production [89]. 

Finally, Papadakis and Condaxakis (2024) tested a 

passively governed wind turbine blade design with GFRP 

composites. They also found that plane-spaced GFRP 

laminates increased blade flex and aerodynamics for a 

better, more efficient design [90]. 

 

VII.4. General Contributions in Wind Turbine 

 

Berboucha et al. (2017) suggested a wind turbine that 

would use Permanent Magnet Synchronous Generators 

(PMSG) and a 5-level diode-clamped inverter, with a 

focus on fuzzy logic control to control rotational speed 

under wind conditions. Their results revealed less total 

harmonic distortion (THD) and more dynamic range, 

evidence that good control algorithms improve power 

quality and efficiency [91]. Riyadh et al. (2017), using 

CFD calculations and inverse BEM methods, 

investigated the aerodynamic performance of the NREL 

Phase II rotor using S809 blade profiles. Their findings 

showed the need for precise pressure distribution and 

torque prediction to maximize power delivery, though 

they lacked the ability to simulate deep stall [92]. Saidi et 

al. (2018) was devoted to assessing sensor-based and 

sensorless Maximum Power Point Tracking (MPPT) for 

PMSG. The method of estimating wind speed showed 

improved system stability and mechanical stress 

reduction and effectively maximized power extraction 

[93]. 

Ebrahimi et al. (2018) studied the best-fit design of a 

hybrid microgrid comprising solar, wind, diesel, and grid 

for Kish Island, bringing a 34% renewable share, as well 

as the dynamics of energy trade-offs and carbon savings 

[94]. Saidi et al. (2019) focused on a fuzzy logic-based 

direct voltage control (DVC) system for a PWM rectifier 

coupled to a PMSG in a variable-speed wind power 

system that provides high load- and wind-strength-

related stability with a low THD of 2.25% [95]. Ahmed 

et al. (2019) compared Proportional-Integral (PI) and 

fuzzy PI controllers for vector control of a Doubly Fed 

Induction Generator (DFIG) in variable-speed wind 

turbines, showing that the fuzzy controller was more 

robust and flexible under parametric variations [96]. 

Douvi et al. (2021) analyzed rain’s aerodynamic 

performance on HAWTs in computational models. They 

showed that the rainfall significantly reduced the 

efficiency of turbines, and power coefficients dropped by 

up to 23.9% at high Liquid Water Content (LWC), due to 

more aerodynamic drag and water film formation [97]. 

Kouadria and Debbache (2022), on the other hand, 

studied the structural behavior of wind blades with and 

without power control. They discovered that power 

control slowed blade tip deflection by 64 percent at high 

wind speeds, reducing stress and extending blade life. 

They focused on the importance of composite material 

and structural design to maximize endurance and 

performance [98]. Meanwhile, Zemali et al. (2022) used 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

fault detection and isolation in wind turbine drive trains. 

Their diagnostic method was successful at identifying 

defects under artificial conditions, which illustrates how 

intelligent systems can preserve stability [99]. 

Sithole et al. (2023) performed a predictive analysis of 

small wind turbine applications in South Africa and 

found Prototype 3 most efficient at low wind speeds 

(39.5 W at its peak power in Soweto) and predicted 

improvements along the coast (such as Gqeberha) [100]. 

Dahmani et al. (2023) built a bootstrap-aggregated neural 

network (BANN) to forecast global horizontal irradiance 



Parankush Koul / International Journal of Energetica (IJECA) Vol. 9, N°2, 2024, pp. 12-27 

                                                                                                                                                                                   Page 22 
 

(GHI) globally in Tamanrasset, Algeria, and had a 

correlation coefficient of 0.9580, showing its usefulness 

in the prediction of solar energy [101]. The second 

article, by Sithole et al. (2023), focused on optimizing 

small wind turbine blades by BEM Theory (BEMT) and 

CFD. It revealed that a 7-blade prototype produced 

maximum power of 39.5 W at 4.2 km/h wind speed, and 

that optimized blade geometry and pitch angles resulted 

in improved efficiency [102]. 

 

VIII. Conclusions 

 

The study on developments in blade design for 

boosting wind turbine efficiency underlines the 

significant advancements in aerodynamic, structural, and 

material technologies that are vital for the future of 

renewable energy production. The research underlines 

that improving the aerodynamic geometry of wind 

turbine blades is crucial for optimum energy extraction. 

Innovations in this field concentrate on increasing the 

lift-to-drag ratio, which directly improves the overall 

efficiency of wind turbines. Structural advances are 

emphasized as vital for assuring the longevity and 

operational dependability of turbine blades. These 

advances enable blades to survive harsh weather 

conditions while lowering maintenance expenses, 

ultimately boosting their lifetime and performance. The 

article emphasizes the essential importance of material 

improvements in blade design. The development of 

lightweight and durable materials permits the production 

of longer blades that can catch more energy without 

sacrificing structural integrity. This is necessary for the 

greater acceptance of wind energy as a dependable 

energy source. Overall, the article highlights the 

necessity of a diverse approach to blade design advances. 

By combining aerodynamic, structural, and material 

developments, the efficiency of wind turbines may be 

greatly enhanced, helping the shift to sustainable energy 

sources in response to rising worldwide energy needs. In 

conclusion, the ongoing advancement of wind turbine 

blade technology is crucial for boosting energy 

absorption and conversion efficiency, eventually 

contributing to the sustainability of renewable energy 

systems. 

 

IX. Challenges and Future Directions 

 

There are many issues related to the blade design of 

wind turbines that should be solved to make it efficient 

and sustainable. Here are the following challenges and 

potential research-and-development areas: 

IX.1. Challenges in Blade Design 

 Environmental Impact: The manufacture and 

disposal of turbine blades pose severe environmental 

concerns, i.e., pollution. Design needs to look for 

alternative materials and processes that reduce these 

effects.  

 Fatigue Load Management: Blades in wind turbines 

can fatigue after a specific period under a periodic 

loading. It is essential to know and control these 

failure modes to make the blades last.  

 Material Degradation: Degradation of material used 

in manufacturing blades poses a big problem, 

especially when used in environments that require 

high temperatures and environmental pressure. This 

will require ongoing work on materials that don’t 

degrade over time and perform better. 

IX.2. Future Directions 

 New Material Research: Future work will need to 

involve the development of new materials and 

composites that are intrinsically degradable. This 

includes looking into nanotechnology and 

biomimetic designs that mimic nature’s solutions for 

greater material resilience.  

 Durable Protective Coatings: By applying hardened 

protective coatings, blades can be protected from 

exposure to UV radiation, moisture, and corrosive 

agents. Advanced coatings could have dramatic 

effects on turbine blades.  

 Sustainability Programs: As demand for renewable 

energy expands, the need exists for innovation to 

drive efficiency, in addition to overall sustainability 

programs. This includes creating sustainable 

manufacturing techniques and materials that 

minimize industrial emissions.  

 Interdisciplinary Collaboration: Future innovations 

in blade design will require cross-disciplinary input 

from engineers, material scientists, and 

environmental specialists. This collaborative model 

can yield breakthrough solutions to the many 

challenges that wind turbine blade design faces. 
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